已知Sn是等差數(shù)列{an}的前n項(xiàng)和,滿足a3=4,S7=35;Tn是數(shù)列{bn}的前n項(xiàng)和,滿足:Tn=2bn-2(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{
1
an•(log2bn)
}的前n項(xiàng)和Rn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式列出方程組,求出數(shù)列的首項(xiàng)和公差,由此能求出數(shù)列{an}的通項(xiàng)公式;由已知條件推導(dǎo)出{bn}是以2為公比的等比數(shù)列,由此能求出數(shù)列{bn}的通項(xiàng)公式.
(2)由
1
an•(log2bn)
=
1
(n+1)•(log22n)
=
1
n(n+1)
=
1
n
-
1
n+1
,利用裂項(xiàng)求和法能求出
數(shù)列{
1
an•(log2bn)
}的前n項(xiàng)和Rn
解答: (本題共12分)
(1)解:設(shè)等差數(shù)列{an}的公差d,
∵a3=4,S7=35,∴
a1+2d=4
7a1+
7×6
2
d=35

解得a1=2,d=1,
∴an=2+(n-1)×1=n+1.…(3分)
Tn=2bn-2,Tn-1=2bn-1-2,(n≥2,n∈N*)
兩式相減得:bn=2bn-2bn-1,
∴bn=2bn-1,且n=1也滿足,
∴{bn}是以2為公比的等比數(shù)列,
又∵b1=2,∴bn=2n.…(7分)
(2)解:∵
1
an•(log2bn)
=
1
(n+1)•(log22n)
=
1
n(n+1)
=
1
n
-
1
n+1
,
Rn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
.…(12分)
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將A,B,C,D,E五種不同的文件隨機(jī)地放入編號依次為1,2,3,4,5,6,7的七個(gè)抽屜內(nèi),每個(gè)抽屈至多放一種文件,則文件A,B被放在相鄰的抽屜內(nèi)且文件C,D被放在不相鄰的抽屜內(nèi)的概率是( 。
A、
2
21
B、
4
21
C、
8
21
D、
1
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…log3an,若cn=-
1
bn
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,我國某搜救艦艇以30(海里/小時(shí))的速度在南海某區(qū)域搜索,在點(diǎn)A處測得基地P在南偏東60°,向北航行40分鐘后到達(dá)點(diǎn)B,測得基地P在南偏東30°,并發(fā)現(xiàn)在北偏東60°的航向上有疑似馬航飄浮物,搜救艦艇立即轉(zhuǎn)向直線前往,再航行80分鐘到達(dá)飄浮物C處,求此時(shí)P、C間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
x﹙x-1﹚﹙x≥0 ﹚
-x﹙x+1﹚ ﹙x<0﹚
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人進(jìn)行乒乓球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判.設(shè)各局中雙方獲勝的概率均為
1
2
,各局比賽的結(jié)果相互獨(dú)立,第1局甲當(dāng)裁判.
(Ⅰ)求第4局甲當(dāng)裁判的概率;
(Ⅱ)用X表示前4局中乙當(dāng)裁判的次數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC的頂點(diǎn)坐標(biāo)為A(-1,5)、B(-2,-1)、C(4,3).
(1)求AB邊上的高線所在的直線方程;
(2)求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為U=R,集合A=(-∞,-3]∪[6,+∞),B={x|-2<x<8}.
(1)求如圖陰影部分表示的集合;
(2)已知非空集合C={x|x>2a且x<a+1},若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.
(1)求證DM∥平面APC; 
(2)求證平面ABC⊥平面APC;
(3)若BC=PC=4,求二面角P-AB-C的正弦值.

查看答案和解析>>

同步練習(xí)冊答案