【題目】空氣質(zhì)量問題,全民關(guān)注,有需求就有研究,某科研團(tuán)隊(duì)根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過測試得到霧炮降塵率的頻率分布直方圖:
若降塵率達(dá)到18%以上,則認(rèn)定霧炮除塵有效.
(1)根據(jù)以上數(shù)據(jù)估計(jì)霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個(gè)區(qū)域,每個(gè)區(qū)域投放3臺(tái)霧炮進(jìn)行除塵(霧炮之間工作互不影響),若在一個(gè)區(qū)域內(nèi)的3臺(tái)霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理,求后期投入費(fèi)用的分布列和期望.
【答案】
(1)
解:估計(jì)霧炮除塵有效的概率P= 5×0.05+5×0.04+5×0.03+5×0.01=
(2)
解:由(1)可得:在一個(gè)區(qū)域內(nèi)的3臺(tái)霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理,
因此在一個(gè)區(qū)域內(nèi)需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理的概率P= = .
∴后期投入?yún)^(qū)域X~B .后期投入費(fèi)用ξ=20X(萬元).
P(ξ=20k)=P(X=k)= .
ξ的分布列為:
ξ | 0 | 20 | 40 | 60 |
P |
Eξ=0+ +40× +60× =7.5(萬元)
【解析】(1)估計(jì)霧炮除塵有效的概率P= 5×0.05+5×0.04+5×0.03+5×0.01.(2)由(1)可得:在一個(gè)區(qū)域內(nèi)的3臺(tái)霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理,
因此在一個(gè)區(qū)域內(nèi)需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理的概率P= = .后期投入?yún)^(qū)域X~B .后期投入費(fèi)用ξ=20X(萬元).利用P(ξ=20k)=P(X=k)= 即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y=f(t)是某港口水的深度y(米)關(guān)于時(shí)間t(小時(shí))的函數(shù),其中.下表是該港口某一天從0時(shí)至24時(shí)記錄的時(shí)間t與水深y的關(guān)系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 12 | 14.9 | 11.9 | 9 | 12.1 |
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)的圖象.⑴求的解析式;⑵設(shè)水深不小于米時(shí),輪船才能進(jìn)出港口。某輪船在一晝夜內(nèi)要進(jìn)港口靠岸辦事,然后再出港。問該輪船最多能在港口停靠多長時(shí)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量A與B的隨機(jī)變量K2越大,說明“A與B有關(guān)系”的可信度越大.
②以模型y=cekx去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè)z=lny,將其變換后得到線性方程z=0.3x+4,則c,k的值分別是e4和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為y=a+bx中,b=1, =1, =3,
則a=1.正確的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an , 求數(shù)列{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實(shí)數(shù)a的值;
(2)證明:當(dāng)a=2時(shí),不等式f(x)≥ ﹣e1﹣x恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四面體ABCD的頂點(diǎn)都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,過AD作相互垂直的平面α、β,若平面α、β截球O所得截面分別為圓M、N,則( )
A.MN的長度是定值
B.MN長度的最小值是2
C.圓M面積的最小值是2π
D.圓M、N的面積和是定值8π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)時(shí),函數(shù)的值域是_________.
【答案】[-1,2]
【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),
∵﹣≤x≤,
∴﹣≤x+≤,
∴﹣≤sin(x+)≤1,
∴函數(shù)f(x)的值域?yàn)?/span>[﹣1,2],
故答案為:[﹣1,2].
【題型】填空題
【結(jié)束】
15
【題目】若點(diǎn)O在內(nèi),且滿足,設(shè)為的面積, 為的面積,則=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m
(1)作函數(shù)f(x)的圖象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com