【題目】設(shè)函數(shù)
(1)求f(x)的單調(diào)區(qū)間及最大值;
(2)討論關(guān)于x的方程|lnx|=f(x)根的個(gè)數(shù).

【答案】
(1)解:∵ = ,解f′(x)>0,得 ;解f′(x)<0,得

∴函數(shù)f(x)的單調(diào)遞增區(qū)間為 ;單調(diào)遞減區(qū)間為

故f(x)在x= 取得最大值,且


(2)解:函數(shù)y=|lnx|,當(dāng)x>0時(shí)的值域?yàn)閇0,+∞).如圖所示:

①當(dāng)0<x≤1時(shí),令u(x)=﹣lnx﹣ ﹣c,

c= =g(x),

=

令h(x)=e2x+x﹣2x2,則h′(x)=2e2x+1﹣4x>0,∴h(x)在x∈(0,1]單調(diào)遞增,

∴1=h(0)<h(x)≤h(1)=e2﹣1.

∴g′(x)<0,∴g(x)在x∈(0,1]單調(diào)遞減.

∴c

②當(dāng)x≥1時(shí),令v(x)=lnx﹣ ,得到c=lnx﹣ =m(x),

= >0,

故m(x)在[1,+∞)上單調(diào)遞增,∴c≥m(1)=

綜上①②可知:當(dāng) 時(shí),方程|lnx|=f(x)無實(shí)數(shù)根;

當(dāng) 時(shí),方程|lnx|=f(x)有一個(gè)實(shí)數(shù)根;

當(dāng) 時(shí),方程|lnx|=f(x)有兩個(gè)實(shí)數(shù)根.


【解析】(1)利用導(dǎo)數(shù)的運(yùn)算法則求出f′(x),分別解出f′(x)>0與f′(x)<0即可得出單調(diào)區(qū)間及極值與最值;(2)分類討論:①當(dāng)0<x≤1時(shí),令u(x)=﹣lnx﹣ ﹣c,②當(dāng)x≥1時(shí),令v(x)=lnx﹣ .利用導(dǎo)數(shù)分別求出c的取值范圍,即可得出結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人組成“星隊(duì)”參加猜成語活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語,在一輪活動(dòng)中,如果兩人都猜對,則“星隊(duì)”得3分;如果只有一個(gè)人猜對,則“星隊(duì)”得1分;如果兩人都沒猜對,則“星隊(duì)”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是 ;每輪活動(dòng)中甲、乙猜對與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(I)“星隊(duì)”至少猜對3個(gè)成語的概率;
(II)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足12Sn﹣36=3n2+8n,數(shù)列{log3bn}為等差數(shù)列,且b1=3,b3=27.
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)令cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中點(diǎn).
(1)求證:A1C∥平面BDC1;
(2)若AB⊥AC,且AB=AC= AA1 , 求二面角A﹣BD﹣C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊分別為a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|﹣|2x﹣3|.

(Ⅰ)在圖中畫出y=f(x)的圖象;
(Ⅱ)求不等式|f(x)|>1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1的焦點(diǎn)在x軸上,A是E的左頂點(diǎn),斜率為k(k>0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(Ⅰ)當(dāng)t=4,|AM|=|AN|時(shí),求△AMN的面積;
(Ⅱ)當(dāng)2|AM|=|AN|時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=﹣2xln(1+ )﹣lnf(x).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)a=0時(shí),函數(shù)g(x)在定義域內(nèi)是否存在零點(diǎn)?如果存在,求出該零點(diǎn);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD是直角梯形,AB⊥AD,AB∥CD,
PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中點(diǎn).

(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案