計算:
(1)
16
25
1
3
+16
3
4
+
1
4
1
2
;
(2)0.064-
1
3
+160.75+0.25
1
2
考點(diǎn):對數(shù)的運(yùn)算性質(zhì),根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用分?jǐn)?shù)指數(shù)冪和根式的互化及運(yùn)算法則求解.
解答: 解:(1)
16
25
1
3
+16
3
4
+
1
4
1
2

=
16
75
3
+8
3
+
1
8
2

=
616
75
3
+
2
8

(2)0.064-
1
3
+160.75+0.25
1
2

=
1
0.4
+8+0.5
=11.
點(diǎn)評:本題考查分?jǐn)?shù)指數(shù)冪和根式的互化及化簡求值,是基礎(chǔ)題,解題時要注意運(yùn)算法則的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos2x+4sinx,求:
(1)f(-
π
4
)
的值;
(2)f(x)的最大值以及取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
,則f(x)在( 。
A、(-∞,0)上單調(diào)遞增
B、(0,+∞)上單調(diào)遞增
C、(-∞,0)上單調(diào)遞減
D、(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知兩條直線l1:(a-1)x+2y+1=0,l2:x+ay+3=0平行,求實(shí)數(shù)a的值.
(2)過原點(diǎn)且傾斜角為45°的直線l與圓C:x2+y2-4y=0相交于點(diǎn)A、B,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,BC=3,AC=4,AB=5點(diǎn)P是三邊上的任意一點(diǎn),m=
PA
PB
,則m的最小值是( 。
A、-25
B、-
25
4
C、-
9
4
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:m>2;q:1<m<3,若p或q為真,p且q為假,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,且
Sn
Tn
=
3n-11
2n+7
,則
a6
b6
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2x,且函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線y=x對稱,則函數(shù)g(x2)是(  )
A、奇函數(shù)且在(0,+∞)上是減函數(shù)
B、偶函數(shù)且在(0,+∞)上是增函數(shù)
C、奇函數(shù)且在(-∞,0)上是減函數(shù)
D、偶函數(shù)且在(-∞,0)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為:[0,20),[20,40),[40,60)[60,820),[80,100],則
(1)圖中的x=
 

(2)若上學(xué)所需時間不少于1小時的學(xué)生可申請在學(xué)校住宿,則該校600名新生中估計
 
 名學(xué)生可以申請住宿.

查看答案和解析>>

同步練習(xí)冊答案