已知A(a,3)B(3,3a+3)兩點(diǎn)的距離為5,則a的值為________(結(jié)果用分?jǐn)?shù)表示).

答案:8/5,-1$-1,8/5
解析:

或-1


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2,-3)
,
b
=(1,m)
(m∈R),
c
=(2,5)

(I)若(
a
+
b
)•
c
=1
,求m的值;(II)若(
a
-
b
)•(
b
+
c
)>0
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)已知雙曲線(xiàn)C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線(xiàn)的一個(gè)方向向量.
(1)求雙曲線(xiàn)C的方程;
(2)若過(guò)點(diǎn)(-3,0)任意作一條直線(xiàn)與雙曲線(xiàn)C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對(duì)于雙曲線(xiàn)Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線(xiàn)Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線(xiàn)MN是否過(guò)定點(diǎn)?若是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.然后在以下三個(gè)情形中選擇一個(gè),寫(xiě)出類(lèi)似結(jié)論(不要求書(shū)寫(xiě)求解或證明過(guò)程).
情形一:雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線(xiàn)y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州一模)已知函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng),且當(dāng)x∈(-∞,0)時(shí)有f(x)+xf'(x)<0成立a=(20.2)•f(20.2),b=(logπ3)•f(1ogπ3),c=(1og39)•f(1ong39),則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:德州一模 題型:單選題

已知函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng),且當(dāng)x∈(-∞,0)時(shí)有f(x)+xf'(x)<0成立a=(20.2)•f(20.2),b=(logπ3)•f(1ogπ3),c=(1og39)•f(1ong39),則a,b,c的大小關(guān)系是( 。
A.b>a>cB.c>a>bC.c>b>aD.a(chǎn)>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:松江區(qū)二模 題型:解答題

已知雙曲線(xiàn)C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線(xiàn)的一個(gè)方向向量.
(1)求雙曲線(xiàn)C的方程;
(2)若過(guò)點(diǎn)(-3,0)任意作一條直線(xiàn)與雙曲線(xiàn)C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對(duì)于雙曲線(xiàn)Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線(xiàn)Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線(xiàn)MN是否過(guò)定點(diǎn)?若是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.然后在以下三個(gè)情形中選擇一個(gè),寫(xiě)出類(lèi)似結(jié)論(不要求書(shū)寫(xiě)求解或證明過(guò)程).
情形一:雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線(xiàn)y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案