延遲退休年齡的問題,近期引發(fā)社會的關(guān)注.人社部于2012年7月25日上午召開新聞發(fā)布會表示,我國延遲退休年齡將借鑒國外經(jīng)驗,擬對不同群體采取差別措施,并以“小步慢走”的方式實施.推遲退休年齡似乎是一種必然趨勢,然而反對的聲音也隨之而起.現(xiàn)對某市工薪階層關(guān)于“延遲退休年齡”的態(tài)度進行調(diào)查,隨機抽取了50人,他們月收入的頻數(shù)分布及對“延遲退休年齡”反對的人數(shù)

月收入(元)
[1000,2000)
[2000,3000)
[3000,4000)
[4000,5000)
[5000,6000)
[6000,7000)
頻數(shù)
5
10
15
10
5
5
反對人數(shù)
4
8
12
5
2
1
(1)由以上統(tǒng)計數(shù)據(jù)估算月收入高于4000的調(diào)查對象中,持反對態(tài)度的概率;
(2)若對月收入在[1000,2000),[4000,5000)的被調(diào)查對象中各隨機選取兩人進行跟蹤調(diào)查,記選中的4人中贊成“延遲退休年齡”的人數(shù)為,求的分布列和數(shù)學(xué)期望.

(1) 0.4
(2)


0
1
2
3





期望為

解析試題分析:(1)根據(jù)題意,由于對某市工薪階層關(guān)于“延遲退休年齡”的態(tài)度進行調(diào)查,隨機抽取了50人,他們月收入的頻數(shù)分布可知月收入高于4000的的人數(shù)有10+5+5=20,那么可知持反對態(tài)度的概率20:50=0.4;
(2)根據(jù)題意,由于對月收入在[1000,2000),[4000,5000)的被調(diào)查對象中各隨機選取兩人進行跟蹤調(diào)查,記選中的4人中贊成“延遲退休年齡”的人數(shù)為可知x的可能取值為0,1,2,3,并且可知 ,即可值分布列為


0
1
2
3





期望
考點:分布列和概率的求解
點評:主要是考查了概率的求解和分布列的運用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2012年第三季度,國家電網(wǎng)決定對城鎮(zhèn)居民民用電計費標(biāo)準(zhǔn)做出調(diào)整,并根據(jù)用電情況將居民分為三類: 第一類的用電區(qū)間在,第二類在,第三類在(單位:千瓦時). 某小區(qū)共有1000戶居民,現(xiàn)對他們的用電情況進行調(diào)查,得到頻率分布直方圖如圖所示.

⑴ 求該小區(qū)居民用電量的中位數(shù)與平均數(shù);
⑵ 利用分層抽樣的方法從該小區(qū)內(nèi)選出10位居民代表,若從該10戶居民代表中任選兩戶居民,求這兩戶居民用電資費屬于不同類型的概率;
⑶ 若該小區(qū)長期保持著這一用電消耗水平,電力部門為鼓勵其節(jié)約用電,連續(xù)10個月,每個月從該小區(qū)居民中隨機抽取1戶,若取到的是第一類居民,則發(fā)放禮品一份,設(shè)為獲獎戶數(shù),求的數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構(gòu)為了解路人對“中國式過馬路 ”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:

 
男性
女性
合計
反感
10
 
 
不反感
 
8
 
合計
 
 
30
 
已知在這30人中隨機抽取1人抽到反感“中國式過馬路 ”的路人的概率是.
(Ⅰ)請將上面的列表補充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關(guān)?(
當(dāng)<2.706時,沒有充分的證據(jù)判定變量性別有關(guān),當(dāng)>2.706時,有90%的把握判定變量性別有關(guān),當(dāng)>3.841時,有95%的把握判定變量性別有關(guān),當(dāng)>6.635時,有99%的把握判定變量性別有關(guān))
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進行分層抽樣調(diào)查,測得身高情況的統(tǒng)計圖如下:

(Ⅰ)估計該校男生的人數(shù);
(Ⅱ)估計該校學(xué)生身高在170~185 cm之間的概率;
(Ⅲ)從樣本中身高在180~190 cm之間的男生中任選2人,求至少有1人身高在185~190 cm之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

由于當(dāng)前學(xué)生課業(yè)負擔(dān)較重,造成青少年視力普遍下降,現(xiàn)從某高中隨機抽取16名學(xué)生,經(jīng)校醫(yī)檢查得到每個學(xué)生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,
小數(shù)點后的一位數(shù)字為葉)如圖示:

 
 
 
 

 
3  5  6  6  6  7  7  7  8  8  9  9
 
5
 
0  1  1  2
 
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若視力測試結(jié)果不低于5.0,則稱為“健康視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“健康視力”的概率;
(3)以這16人的樣本數(shù)據(jù)來估計整個學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記表示抽到“健康視力”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520名女性中有6人患色盲.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;

 
患色盲
不患色盲
總計

 
442
 

6
 
 
總計
44
956
1000
(2)若認為“性別與患色盲有關(guān)系”,則出錯的概率會是多少?
隨機變量
附臨界值參考表:
P(K2x0)
0.10
0.05
0.025
0.10
0.005
0.001
x0
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校從高一年級學(xué)生中隨機抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:后得到如下圖的頻率分布直方圖.

(1)若該校高一年級共有學(xué)生人,試估計該校高一年級期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(2)若從數(shù)學(xué)成績在兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科)(本小題滿分12分)某高校從參加今年自主招生考試的學(xué)生中隨機抽取容量為50的學(xué)生成績樣本,得頻率分布表如下:

組號
分組
頻數(shù)
頻率
第一組
 [230,235)
8
0.16
第二組
 [235,240)

0.24
第三組
 [240,245)
15

第四組
 [245,250)
10
0.20
第五組
 [250,255]
5
0.10
合             計
50
1.00
(1)寫出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進行第二輪考核,分別求第三、四、五各組參加考核人數(shù);
(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,求2人中至少有1名是第四組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以下是某地搜集到的新房屋的銷售價格和房屋的面積的數(shù)據(jù):

房屋面積
110
90
80
100
120
銷售價格(萬元)
33
31
28
34
39
(1)畫出數(shù)據(jù)對應(yīng)的散點圖;
(2)求線性回歸方程;
(3)據(jù)(2)的結(jié)果估計當(dāng)房屋面積為時的銷售價格.
(提示:, ,,
 )

查看答案和解析>>

同步練習(xí)冊答案