【題目】試用恰當(dāng)?shù)姆椒ū硎鞠铝屑?/span>.

1)使函數(shù)有意義的x的集合;

2)不大于12的非負(fù)偶數(shù);

3)滿足不等式的解集;

4)由大于10小于20的所有整數(shù)組成的集合.

【答案】1;(2;(3;(4.

【解析】

1)用描述法表示;(2)、(3)、(4)既可用描述法也可用列舉法.

1)要使函數(shù)有意義,必須使分母,即.

因此所求集合用描述法可表示為.

2)∵不大于12是小于或等于12,非負(fù)是大于或等于0

∴不大于12的非負(fù)偶數(shù)集用列舉法表示為.

用描述法表示為.

3)滿足的解是1,2,34,5.

用列舉法表示為,用描述法表示為.

4)設(shè)大于10小于20的整數(shù)為x,則x滿足條件.故用描述法可表示為,用列舉法表示為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,平面⊥平面, ,

(Ⅰ)求證: ⊥平面

(Ⅱ)求證: ;

(Ⅲ)若點(diǎn)在棱上,且平面,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,P,Q為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),若=0,且∠POF<,則該雙曲線的離心率的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:方程x2+2m-4x+m=0有兩個(gè)不等的實(shí)數(shù)根:命題qx[2,3],不等式x2-4x+13≥m2恒成立.

1)若命題p為真命題,則實(shí)數(shù)m的取值范圍;

2)若命題pq為真命題,命題pq為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:

①集合{x∈N|x3=x}用列舉法表示為{-1,0,1};

②實(shí)數(shù)集可以表示為{x|x為所有實(shí)數(shù)}或{R};

③方程組的解集為{x=1,y=2}.

其中正確的有(  )

A.3個(gè)B.2個(gè)

C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點(diǎn),是棱上的點(diǎn),,

1)求證:平面平面;

2)若為棱的中點(diǎn),求異面直線所成角的余弦值;

3)若二面角大小為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校組織高一年級(jí)學(xué)生到古都西安游學(xué).在某景區(qū),由于時(shí)間關(guān)系,每個(gè)班只能在甲、乙、丙三個(gè)景點(diǎn)中選擇一個(gè)游覽.高一班的名同學(xué)決定投票來(lái)選定游覽的景點(diǎn),約定每人只能選擇一個(gè)景點(diǎn),得票數(shù)高于其它景點(diǎn)的入選.據(jù)了解,在甲、乙兩個(gè)景點(diǎn)中有人會(huì)選擇甲,在乙、丙兩個(gè)景點(diǎn)中有人會(huì)選擇乙.那么關(guān)于這輪投票結(jié)果,下列說(shuō)法正確的是

該班選擇去甲景點(diǎn)游覽;

乙景點(diǎn)的得票數(shù)可能會(huì)超過(guò);

丙景點(diǎn)的得票數(shù)不會(huì)比甲景點(diǎn)高;

三個(gè)景點(diǎn)的得票數(shù)可能會(huì)相等.

A. ①② B. ①③ C. ②④ D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表數(shù)據(jù)為某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:)及對(duì)應(yīng)銷售價(jià)格y(單位:千元/)

x

1

2

3

4

5

y

70

65

55

38

22

1)若yx有較強(qiáng)的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.

2)若該農(nóng)產(chǎn)品每噸的成本為13.1千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,利用上問(wèn)所求的回歸方程,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤(rùn)Z最大?

(參考公式:回歸直線方程為,

查看答案和解析>>

同步練習(xí)冊(cè)答案