11.設(shè)隨機變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ 與Dξ的值分別為( 。
A.$μ=\sqrt{3},Dξ=\sqrt{7}$B.$μ=\sqrt{3},Dξ=7$C.μ=3,Dξ=7D.$μ=3,Dξ=\sqrt{7}$

分析 根據(jù)隨機變量ξ服從正態(tài)分布N(u,7),P(ξ<2)=P(ξ>4),由正態(tài)曲線的對稱性得結(jié)論.

解答 解:∵隨機變量ξ服從正態(tài)分布N(u,7),P(ξ<2)=P(ξ>4),
∴u=$\frac{4+2}{2}$=3,Dξ=7.
故選:C.

點評 本題考查正態(tài)分布,正態(tài)曲線有兩個特點:(1)正態(tài)曲線關(guān)于直線x=μ對稱;(2)在正態(tài)曲線下方和x軸上方范圍內(nèi)的區(qū)域面積為1,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2AD=2,$∠DAB=\frac{π}{3}$,PD⊥AD,PD⊥DC.
(Ⅰ)證明:平面PBC⊥平面PBD;
(Ⅱ)若二面角P-BC-D為$\frac{π}{6}$,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=|2x+3|-|2x-a|,a∈R.
(1)若不等式f(x)≤-5的解集非空,求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)的圖象關(guān)于點(-$\frac{1}{2}$,0)對稱,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)+m(m∈R),當(dāng)x∈[0,$\frac{π}{2}$]時,f(x)的最小值為-1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延長AB至D,使BC=BD,且AD=5,求△ACD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知△ABC的頂點A(-3,0)和頂點B(3,0),頂點C在橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上,則$\frac{5sinC}{sinA+sinB}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{e^x},x≥-1}\\{ln(-x),x<-1}\end{array}}\right.$,則“x=0”是“f(x)=1”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合$M=\{x|y=\sqrt{-{x^2}+2x+8}\}$,集合N={y|y=|x|+1},則M∩N=(  )
A.{x|-2≤x≤4}B.{x|x≥1}C.{x|1≤x≤4}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某三棱錐的三視圖如圖所示,其中三個視圖都是直角三角形,則該三棱錐的體積為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|$\frac{1}{2}$<2x≤2},B={x|ln(x-$\frac{1}{2}$)≤0},則A∩(∁RB)=(  )
A.B.(-1,$\frac{1}{2}$]C.[$\frac{1}{2}$,1)D.(-1,1]

查看答案和解析>>

同步練習(xí)冊答案