(本小題滿分12分)已知x∈[-,],f(x)=tan2x+2tan x+2,求f(x)的最大值和最小值,并求出相應(yīng)的x值.

當(dāng)tan x=-1,即x=-時(shí), y有最小值,ymin=1;當(dāng)tan x=1,即x=時(shí),y有最大值,ymax=5.

解析試題分析:解f(x)=tan2x+2tan x+2=(tan x+1)2+1.  ……………2
∵x∈[-,],∴tan x∈[-,1].        ……………6
∴當(dāng)tan x=-1,即x=-時(shí), y有最小值,ymin=1;……………9
當(dāng)tan x=1,即x=時(shí),y有最大值,ymax=5.    ……………12
考點(diǎn):二次函數(shù)在某閉區(qū)間上的最值問題;正切函數(shù)的值域。
點(diǎn)評(píng):影響二次函數(shù)在閉區(qū)間上的最值主要有三個(gè)因素:拋物線的開口方向、對(duì)稱軸和區(qū)間的位置。我們常見的并且感到困難的主要是這兩類問題:一是動(dòng)軸定區(qū)間,二是定軸動(dòng)區(qū)間。此題是最簡(jiǎn)單、最基礎(chǔ)的二次函數(shù)在閉區(qū)間上的求最值問題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知最小正周期為
(1).求函數(shù)的單調(diào)遞增區(qū)間及對(duì)稱中心坐標(biāo)
(2).求函數(shù)在區(qū)間上的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)在中,分別是角的對(duì)邊,R為外接圓的半徑,且,,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分18分)知函數(shù)的圖象的一部分如下圖所示。

(1)求函數(shù)的解析式;
(2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)已知函數(shù)f(x)=cos(-)+cos(),k∈Z,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在[0,π)上的減區(qū)間;
(3)若f(α)=,α∈(0,),求tan(2α+)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知:求下列各式的值:
(1);  (2) ;    (3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是三角形的內(nèi)角,且是關(guān)于方程的兩個(gè)根。
(1)求的值;(6分)
(2)求的值.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)已知的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)函數(shù)的部分圖象如下圖所示,該圖象與軸交于點(diǎn),與軸交于點(diǎn),為最高點(diǎn),且的面積為

(Ⅰ)求函數(shù)的解析式;
(Ⅱ),求的值.
(Ⅲ)將函數(shù)的圖象的所有點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再向左平移個(gè)單位,得函數(shù)的圖象,若函數(shù)為奇函數(shù),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案