已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時(shí),,,故等式成立.
② 假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:
即,因此n=k+1時(shí)等式也成立
由①和②,可知對(duì)任意,成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:福建省“四地六!09-10學(xué)年高一下學(xué)期第二次聯(lián)考數(shù)學(xué)試卷 題型:解答題
(本題滿分12分)
已知是等差數(shù)列,其前n項(xiàng)和為,已知求數(shù)列的通項(xiàng)公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省長郡中學(xué)高二學(xué)業(yè)水平二模考試數(shù)學(xué) 題型:解答題
已知是等差數(shù)列,其前n項(xiàng)和為,已知
(1)求數(shù)列的通項(xiàng)公式; (2)設(shè),證明是等比數(shù)列,并求其前n項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省寧波市金蘭合作組織高三上學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題14分)已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)記,,求().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:解答題
已知是等差數(shù)列,其前n項(xiàng)和為, 是等比數(shù)列,且
(I)求數(shù)列與的通項(xiàng)公式;
(II)記求證:,。
【考點(diǎn)定位】本小題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和等基礎(chǔ)知識(shí).考查化歸與轉(zhuǎn)化的思想方法.考查運(yùn)算能力、推理論證能力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年廣東省高二第二學(xué)期3月月考數(shù)學(xué)理卷 題型:解答題
(14分)
已知是等差數(shù)列,其前n項(xiàng)和為Sn,已知
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),證明是等比數(shù)列,并求其前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com