【題目】已知拋物線,且,,三點(diǎn)中恰有兩點(diǎn)在拋物線上,另一點(diǎn)是拋物線的焦點(diǎn).
(1)求證:、、三點(diǎn)共線;
(2)若直線過拋物線的焦點(diǎn)且與拋物線交于、兩點(diǎn),點(diǎn)到軸的距離為,點(diǎn)到軸的距離為,求的最小值.
【答案】(1)見解析;(2)8.
【解析】分析:(1)先根據(jù)三點(diǎn)坐標(biāo)判定三點(diǎn)與拋物線的位置,再確定三點(diǎn)坐標(biāo),利用兩直線的斜率相等判定三點(diǎn)共線;(2)設(shè)出直線方程,聯(lián)立直線和拋物線的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系、基本不等式進(jìn)行求解.
詳解:(1)由條件,可知,在拋物線上,是拋物線的焦點(diǎn).
所以 解得
所以,,,
所以,,所以,
所以、、三點(diǎn)共線.
(2)由條件可知,可設(shè),
代入,得,
,解得.
設(shè),,則,
所以 ,
當(dāng)且僅當(dāng),即或時,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域?yàn)?/span>R上的奇函數(shù),當(dāng)x>0時,f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費(fèi)用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)動直線與橢圓C有且僅有一個公共點(diǎn),判斷是否存在以原點(diǎn)O為圓心的圓,滿足此圓與相交兩點(diǎn),(兩點(diǎn)均不在坐標(biāo)軸上),且使得直線, 的斜率之積為定值?若存在,求此圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入萬元,甲、乙兩種商品分別可獲得萬元的利潤,利潤曲線,,如圖所示.
(1)求函數(shù)的解析式;
(2)應(yīng)怎樣分配投資資金,才能使投資獲得的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取 名同學(xué),測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )
A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大
C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-.
(1)判斷函數(shù)的奇偶性,并證明;
(2)用單調(diào)性的定義證明函數(shù)f(x)=2x-在(0,+∞)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到如表(單位:人):
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(Ⅰ)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(Ⅱ)①現(xiàn)從所抽取的30歲以上的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再從這10人中隨機(jī)選出3人贈送優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用共享單車的概率.
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com