【題目】在一段時間內(nèi),分5次測得某種商品的價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為:

1

2

3

4

5

價格x

1.4

1.6

1.8

2

2.2

需求量y

12

10

7

5

3

已知

(1)畫出散點圖;

(2)求出yx的線性回歸方程;

(3)如價格定為1.9萬元,預測需求量大約是多少?(精確到0.01 t).

參考公式: .

【答案】(1)見解析;(2)y=28.1-11.5x;(3)6.25t.

【解析】分析:(1)先描出各點即得散點圖.(2)利用最小二乘法求出yx的線性回歸方程.(3)令x=1.9即得需求量.

詳解:(1)散點圖如圖所示:

(2)因為×9=1.8,×37=7.4,

,

所以

a=- b=7.4+11.5×1.8=28.1,

yx的線性回歸方程為 y=28.1-11.5x.

(3)當x=1.9時,y =28.1-11.5×1.9=6.25(t),

所以如價格定為1.9萬元,預測需求量大約是6.25(t).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量=(sin(A-B),2cosA)=(1,cos(-B)),且=-sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對的角.
(Ⅰ)求角C的大;
(Ⅱ)若sinA+sinB=sinC,且 , 求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點,求直線AD與平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩同學5次綜合測評的成績?nèi)缜o葉圖所示.

9

8

8

3

3

7

2

1

0

9

9

老師在計算甲、乙兩人平均分時,發(fā)現(xiàn)乙同學成績的一個數(shù)字無法看清.若從{0,1,2,…,9}隨機取一個數(shù)字代替,則乙的平均成績超過甲的平均成績的概率為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點D,D1分別為AC,A1C1上的點.

(1)當的值等于何值時,BC1∥平面AB1D1;

(2)若平面BC1D∥平面AB1D1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2+lnx.
(Ⅰ)當a=﹣1時,求函數(shù)y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數(shù)y=f(x)的圖象總在直線y=-的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數(shù)f(x)的導函數(shù).若a=1,試問:在區(qū)間[1,10]上是否存在k(k<100)個正數(shù)x1 , x2 , x3…xk , 使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖l,在正方形ABCD中,AB=2,E是AB邊的中點,F(xiàn)是BC邊上的一點,對角線AC分別交DE、DF于M、N兩點.將ADAE,CDCF折起,使A、C重合于A點,構(gòu)成如圖2所示的幾何體.
(I)求證:A′D⊥面A′EF;
(Ⅱ)試探究:在圖1中,F(xiàn)在什么位置時,能使折起后的幾何體中EF∥平面AMN,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對應的邊分別為a,b,c.
(1)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 , , 是非零向量,已知命題p:若 =0, =0,則 =0;命題q:若 , ,則 ,則下列命題中真命題是(
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)

查看答案和解析>>

同步練習冊答案