如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E.OE交AD于點(diǎn)F.
(I)求證:DE是⊙O的切線;
(II)若數(shù)學(xué)公式=數(shù)學(xué)公式,求數(shù)學(xué)公式的值.

解:(I)連接OD,可得∠ODA=∠OAD=∠DAC    。2分)
∴OD∥AE.又AE⊥DE,….(3分)
∴DE⊥OD.而OD為半徑,
∴DE是⊙O的切線 (5分)
(II)由(I)得OD∥AE,
=
==,(8分)
=,故= (10分)
分析:(I)連接OD,根據(jù)角平分線定義和等腰三角形性質(zhì)推行∠CAD=∠ODA,推出OD∥AC,根據(jù)平行線性質(zhì)和切線的判定推出即可;
(II)先由(I)得OD∥AE,再結(jié)合平行線分線段成比例定理即可得到答案.
點(diǎn)評(píng):考查了切線的判定定理,能夠綜合運(yùn)用角平分線的性質(zhì)、全等三角形的判定和性質(zhì)以及平行線分線段成比例定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)試題(理) 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于A、B的一點(diǎn).

(1)若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)在四面體P-ABC中,AP=AB=1,設(shè).若動(dòng)點(diǎn)M在四面體P-ABC表面上運(yùn)動(dòng),并且總保持PB⊥AM.設(shè)為動(dòng)點(diǎn)M的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時(shí),二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)文 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于A、B的一點(diǎn).

(1)若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)如圖,若四面體P-ABC中,AP=AB=1,AE⊥PB,垂足為E,AF⊥PC,垂足為F.設(shè)∠EAF=,為△AEF面積的函數(shù),求取最大值時(shí)二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,E、F分別是ADBC邊上的點(diǎn),EFAB,EFAC于點(diǎn)O,以EF為棱把它折成直二面角A-EF-D后,求證:不論EF怎樣移動(dòng),∠AOC是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省南充高中08-09學(xué)年高二下學(xué)期第四次月考(理) 題型:解答題

 如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點(diǎn)C為圓周上異于AB的一點(diǎn).

(1)若一個(gè)面體中有個(gè)面是直角三角形,則稱這個(gè)面體的直度為.那么四面體的直度為多少?說明理由;

(2)在四面體中,,設(shè).若動(dòng)點(diǎn)在四面體 表面上運(yùn)動(dòng),并且總保持.設(shè)為動(dòng)點(diǎn)的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時(shí),二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案