橢圓
x2
25
+
y2
9
=1
上到兩個焦點距離之積最小的點的坐標是
(±5,0)
(±5,0)
分析:設焦點坐標為F1,F(xiàn)2,依題意可知|PF1|=a+ex,|PF2|=a-ex,從而得出|PF1|•|PF2|,根據(jù)x的取值范圍可求得|PF1|•|PF2的最小值,當且僅當x=a時等號成立,根據(jù)橢圓對稱性可知當點動P在橢圓的長軸頂點時,等號成立.點P的坐標可得.
解答:解:設焦點坐標為F1,F(xiàn)2,橢圓上一點P(x,y),
依題意可知|PF1|=a+ex,|PF2|=a-ex,
從而得出|PF1|•|PF2|=(a+ex)(a-ex)=a2-e2x2
根據(jù)x的取值范圍[-a,a],
得|PF1|•|PF2的最小值a2-e2a2,當且僅當x=±a時等號成立,
根據(jù)橢圓對稱性可知當點動P在橢圓的長軸頂點時,等號成立
∴此時點P的坐標為(±5,0).
故答案為:(±5,0)
點評:本題主要考查了橢圓的標準方程和橢圓的基本性質.考查了學生對橢圓定義的理解和運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知△ABC頂點A(-4,0)和C(4,0),頂點B在橢圓
x2
25
+
y2
9
=1
上,則
sinA+sinC
sinB
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是橢圓
x2
25
+
y2
9
=1
上一點,M、N分別是兩圓:(x+4)2+y2=1和(x-4)2+y2=1上的點,則|PM|+|PN|的最小值與最大值的積為
96
96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
25
+
y2
9
=1
的焦點F1,F(xiàn)2,AB是橢圓過焦點F1的弦,則△ABF2的周長是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2,分別是橢圓
x2
25
-
y2
9
=1
的左、右焦點,點P在橢圓上,若|PF1|=9|PF2|,則P點的坐標為
(5,0)
(5,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有下列五個命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題.
②在平面內(nèi),F(xiàn)1、F2是定點,丨F1F2丨=6,動點M滿足丨MF1丨-丨MF2丨=4,則點M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件.
④“若-3<m<5,則方程
x2
5-m
+
y2
m+3
=1是橢圓”.
⑤已知向量
a
,
b
,
c
是空間的一個基底,則向量
a
+
b
,
a
-
b
c
也是空間的一個基底.
⑥橢圓
x2
25
+
y2
9
=1上一點P到一個焦點的距離為5,則P到另一個焦點的距離為5.
其中真命題的序號是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

同步練習冊答案