已知{an}為等差數(shù)列,sn為其前n項(xiàng)的和,bn=
sn
n
,設(shè)A={a1,a2,a3,…},B={b1,b2,b3,…},則(  )
分析:根據(jù){an}為等差數(shù)列,sn為其前n項(xiàng)的和設(shè)出通項(xiàng),研究集合中元素的通項(xiàng)之間的關(guān)系可判定兩集合的關(guān)系.
解答:解:∵{an}為等差數(shù)列,sn為其前n項(xiàng)的和
∴設(shè)an=pn+q,則sn=
p+q+pn+q
2
=
p
2
(n+1)+q
當(dāng)n=2m-1時(shí),sn=pm+q與an=pn+q一致
∴集合A中的每個(gè)元素都是集合B中的元素即A⊆B
故選A.
點(diǎn)評:本題主要考查了兩個(gè)集合之間的關(guān)系,解題的關(guān)鍵通過研究集合中元素的通項(xiàng)之間的關(guān)系,同時(shí)考查了分析問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( 。=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)an的前n項(xiàng)和為Sn,S10=
3
0
(1+3x)dx
,則a5+a6=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)到{an}中,a1=120,公差d=-4,Sn為其前n項(xiàng)和,若Sn≤an(n≥2).則n的最小值為(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( 。=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年江蘇省蘇州市高三教學(xué)調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( )=24,則S11為定值”為真命題,由于印刷問題,括號處的數(shù)模糊不清,可推得括號內(nèi)的數(shù)為   

查看答案和解析>>

同步練習(xí)冊答案