已知f(x)=
2x+3,x∈(-∞,0)
2x2+1,x∈[0,+∞)
,
(1)求f(0)和f[f(-1)]的值;
(2)畫出函數(shù)草圖;
(3)求使f(x)<2的x值的集合.
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:(1)由分段函數(shù)的表達(dá)式即可得到f(0)和f[f(-1)]的值;
(2)畫出函數(shù)的圖象,注意各段的范圍及端點(diǎn)的情況;
(3)當(dāng)x<0時(shí),有2x+3<2;當(dāng)x≥0時(shí),有2x2+1<2.分別解出它們,最后求并集即可.
解答: 解:(1)由于f(x)=
2x+3,x∈(-∞,0)
2x2+1,x∈[0,+∞)

則f(0)=1,
f[f(-1)]=f(1)=3;
(2)圖象如右:
(3)當(dāng)x<0時(shí),令2x+3<2的x<-
1
2
,適合x<0;
當(dāng)x≥0時(shí),令2x2+1<2得-
2
2
x<
2
2
,結(jié)合x≥0得0≤x<
2
2
;
綜上述可得x的范圍是(-∞,0)∪[0,
2
2
)
點(diǎn)評:本題考查分段函數(shù)及應(yīng)用,考查分段函數(shù)值和圖象,以及解不等式,注意各段的自變量的范圍是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-x(x-a)2(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)f(x)的極大值和極小值;
(Ⅲ)當(dāng)a>3時(shí),在區(qū)間[-1,0]上是否有實(shí)數(shù)k使不等式f(k-cosx)≥f(k2-cos2x),對任意的x∈R恒成立,若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線x+y+1=0與以橢圓C的右焦點(diǎn)為圓心,以橢圓的長半軸長為半徑的圓相切.
(1)求橢圓的方程.
(2)設(shè)P為橢圓上一點(diǎn),若過點(diǎn)M(2,0)的直線l與橢圓E相交于不同的兩點(diǎn)S和T,且滿足
OS
+
OT
=t
OP
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若cos(
π
2
+A)sin(
2
+B)tan(C-π)<0,求證:△ABC是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ+cosθ=-
5
3
,則cos(2θ-
2
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AB是圓O的直徑,點(diǎn)C在圓O上,延長BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+x+c(其中a,c是實(shí)數(shù)且為常數(shù)).
(1)若f(x)>2x的解集為{x|-2<x<1},求a和c的值;
(2)解不等式f(x)<(3-a)x+2+c.(審題注意:第一問結(jié)論不能用于第二問)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,(x>0)
3x,(x≤0)
,則方程f(x)=1解的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)函數(shù)y=
-2
x
的值域是
 

(2)函數(shù)y=x2+x(-1≤x≤3)的值域是
 

查看答案和解析>>

同步練習(xí)冊答案