(本題8分)在邊長(zhǎng)為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線(xiàn)折起(如圖),做成一個(gè)無(wú)蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱底的容積最大?最大容積是多少?
當(dāng)x=40cm時(shí),箱子容積最大,最大容積是16 000cm3
【解析】設(shè)箱底邊長(zhǎng)為xcm,則箱高cm,得箱子容積
.
令 =0,解得 x=0(舍去),x=40,
并求得 V(40)=16 000
由題意可知,當(dāng)x過(guò)。ń咏0)或過(guò)大(接近60)時(shí),箱子容積很小,因此,16 000是最大值
故當(dāng)x=40cm時(shí),箱子容積最大,最大容積是16 000cm3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題8分)在邊長(zhǎng)為60 cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線(xiàn)折起(如圖),做成一個(gè)無(wú)蓋的方底箱子,箱底的邊長(zhǎng)是多少時(shí),箱底的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分.
如圖所示,ABCD是一塊邊長(zhǎng)為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個(gè)有邊落在BC與CD上的長(zhǎng)方形鐵皮PQCR,其中P是上一點(diǎn).設(shè),長(zhǎng)方形PQCR的面積為S平方米.
(1)求S關(guān)于的函數(shù)解析式;
(2)設(shè),求S關(guān)于t的表達(dá)式以及S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分.
如圖所示,ABCD是一塊邊長(zhǎng)為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個(gè)有邊落在BC與CD上的長(zhǎng)方形鐵皮PQCR,其中P是上一點(diǎn).設(shè),長(zhǎng)方形PQCR的面積為S平方米.
(1)求S關(guān)于的函數(shù)解析式;
(2)設(shè),求S關(guān)于t的表達(dá)式以及S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年北京市東城區(qū)高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本題8分)在中,角所對(duì)的邊分別為,已知。
(1)求的值;
(2)當(dāng),時(shí),求及的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com