【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)經(jīng)典名著,其中有這樣一個(gè)問題:“今有圓材,埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺.問徑幾何?”其意為:今有-圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該木材,鋸口深一寸,鋸道長(zhǎng)-尺.問這塊圓柱形木材的直徑是多少?現(xiàn)有長(zhǎng)為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻體中的體積約為__________立方寸.(結(jié)果保留整數(shù))
注:l丈=10尺=100寸,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰梯形中,是的中點(diǎn),,將沿著翻折成,使平面平面.
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在點(diǎn)P,使得平面,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,是的中點(diǎn).
(1)證明;
(2)若,
(i)求直線與平面所成角的正弦值;
(ii)設(shè)平面與側(cè)棱交于,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“中國(guó)剩余定理”又稱“孫子定理”.1852年,英國(guó)來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將1到2019這2019個(gè)數(shù)中,能被3除余1且被4除余1的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為( )
A.167B.168C.169D.170
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類似地,我們?cè)趶?fù)數(shù)集C上也可以定義一個(gè)稱為“序”的關(guān)系,記為“>”.定義如下:對(duì)于任意兩個(gè)復(fù)數(shù):當(dāng)且僅當(dāng)“”或“”且“”.按上述定義的關(guān)系“>”,給出以下四個(gè)命題:
①若,則;
②若,則;
③若,則對(duì)于任意;
④對(duì)于復(fù)數(shù),若,則.
其中所有真命題的序號(hào)為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某橢圓C,它的中心在坐標(biāo)原點(diǎn),左焦點(diǎn)為F(﹣,0),且過點(diǎn)D(2,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若已知點(diǎn)A(1,),當(dāng)點(diǎn)P在橢圓C上變動(dòng)時(shí),求出線段PA中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象兩條相鄰的對(duì)稱軸間的距離為.
(1)求的值;
(2)將函數(shù)的圖象沿軸向左平移個(gè)單位長(zhǎng)度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的橢圓C1和拋物線C2有相同的焦點(diǎn)(1,0),橢圓C1過點(diǎn),拋物線的頂點(diǎn)為原點(diǎn).
(1)求橢圓C1和拋物線C2的方程;
(2)設(shè)點(diǎn)P為拋物線C2準(zhǔn)線上的任意一點(diǎn),過點(diǎn)P作拋物線C2的兩條切線PA,PB,其中A、B為切點(diǎn).
設(shè)直線PA,PB的斜率分別為k1,k2,求證:k1k2為定值;
②若直線AB交橢圓C1于C,D兩點(diǎn),S△PAB,S△PCD分別是△PAB,△PCD的面積,試問:是否有最小值?若有,求出最小值;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并將同學(xué)乙的成績(jī)的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),記事件為“其中2個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com