【題目】已知圓,
(1)若直線過定點,且與圓C相切,求的方程.
(2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D的方程.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,且過點,直線交橢圓于不同的兩點,設線段的中點為.
(1)求橢圓的方程;
(2)當的面積為(其中為坐標原點)且時,試問:在坐標平面上是否存在兩個定點,使得當直線運動時,為定值?若存在,求出點的坐標和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+2),g(x)=loga(2﹣x)(a>0,a≠1).
(1)求函數f(x)﹣g(x)的定義域;
(2)判斷f(x)﹣g(x)的奇偶性并證明;
(3)求f(x)﹣g(x)>0中x取值范圍,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】常州地鐵項目正在緊張建設中,通車后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時間間隔 (單位:分鐘)滿足,.經測算,地鐵載客量與發(fā)車時間間隔相關,當時地鐵為滿載狀態(tài),載客量為1200人,當時,載客量會減少,減少的人數與的平方成正比,且發(fā)車時間間隔為2分鐘時的載客量為560人,記地鐵載客量為.
⑴ 求的表達式,并求當發(fā)車時間間隔為6分鐘時,地鐵的載客量;
⑵ 若該線路每分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2018·江西六校聯考)在△ABC中,角A,B,C所對的邊分別為a,b,c,a=4,b=4,cosA=-.
(1)求角B的大;
(2)若f(x)=cos2x+sin2(x+B),求函數f(x)的單調遞增區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)過原點的直線與橢圓交于兩點(不是橢圓的頂點),點在橢圓上,且,直線與軸軸分別交于兩點.
①設直線斜率分別為,證明存在常數使得,并求出的值;
②求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義一:對于一個函數,若存在兩條距離為的直線和,使得時,恒成立,則稱函數在內有一個寬度為的通道.
定義二:若一個函數對于任意給定的正數,都存在一個實數,使得函數在內有一個寬度為的通道,則稱在正無窮處有永恒通道.
下列函數①;②;③;④;⑤. 其中在正無窮處有永恒通道的函數序號是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com