已知等差數(shù)列{an}的前n項和為Sn,且滿足Sn=n2﹣n.
(1)求an;
(2)設數(shù)列{bn}滿足bn+1=2bn﹣an且b1=4,
(i)證明:數(shù)列{bn﹣2n}是等比數(shù)列,并求{bn}的通項;
(ii)當n≥2時,比較bn﹣1•bn+1與bn2的大。
(1);(2)(i),(ii)當或時,,當時,.
解析試題分析:
解題思路:(1)利用求解即可;(2)(i)由構造新數(shù)列,并證明新數(shù)列為等比數(shù)列,進一步求;(ii)利用作差法判定兩式的大小.
規(guī)律總結:求數(shù)列的通項公式一般有三種類型:①利用等差數(shù)列、等比數(shù)列的基本量求通項公式;②已知數(shù)列的首項與遞推式,求通項公式;③利用與的關系求通項公式;比較大小,往往使用作差法.
試題解析:(1)當時;當時,;
滿足上式,
(2)(i)由已知得,即.且,
所以數(shù)列是以2為首項,2為公比的等比數(shù)列 ,
則,所以;
(ii)當時,
,
所以當或時,,當時,.
考點:1.與的關系;2.等比數(shù)列;3.不等式的證明.
科目:高中數(shù)學 來源: 題型:解答題
在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差數(shù)列,a2,b2,a3+2成等比數(shù)列,數(shù)列{bn}的前n項和為Sn.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若Sn+an>m對任意的正整數(shù)n恒成立,求常數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知等差數(shù)列的首項公差且分別是等比數(shù)列的
(1)求數(shù)列和的通項公式;
(2)設數(shù)列對任意正整數(shù)均有成立,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com