【題目】已知為常數(shù), ,函數(shù), (其中是自然對(duì)數(shù)的底數(shù)).

(1)過(guò)坐標(biāo)原點(diǎn)作曲線的切線,設(shè)切點(diǎn)為,求證: ;

(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)先對(duì)函數(shù)求導(dǎo), ,可得切線的斜率,即,由是方程的解,且上是增函數(shù),可證;(2)由 ,先研究函數(shù),則,由上是減函數(shù),可得,通過(guò)研究的正負(fù)可判斷的單調(diào)性,進(jìn)而可得函數(shù)的單調(diào)性,可求出參數(shù)范圍.

試題解析:(1)),

所以切線的斜率

整理得,顯然, 是這個(gè)方程的解,

又因?yàn)?/span>上是增函數(shù),

所以方程有唯一實(shí)數(shù)解,

(2) ,

設(shè),則

易知上是減函數(shù),從而

①當(dāng),即時(shí), 在區(qū)間上是增函數(shù),

,∴上恒成立,即上恒成立.

在區(qū)間上是減函數(shù),所以滿足題意. 

②當(dāng),即時(shí),設(shè)函數(shù)的唯一零點(diǎn)為,

上遞增,在上遞減,

又∵,∴

又∵,

內(nèi)有唯一一個(gè)零點(diǎn),

當(dāng)時(shí), ,當(dāng)時(shí), .

從而遞減,在遞增,與在區(qū)間上是單調(diào)函數(shù)矛盾.

不合題意.綜上①②得,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為等差數(shù)列的前n項(xiàng)和,是正項(xiàng)等比數(shù)列,且,.在①,②,③這三個(gè)條件中任選一個(gè),回答下列為題:

1)求數(shù)列的通項(xiàng)公式;

2)如果m,),寫出mn的關(guān)系式,并求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交線段于點(diǎn).

1)求點(diǎn)的軌跡方程.

2)設(shè)點(diǎn),的軌跡上異于頂點(diǎn)的任意兩點(diǎn),以為直徑的圓過(guò)點(diǎn).求證直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】環(huán)保部門要對(duì)所有的新車模型進(jìn)行廣泛測(cè)試,以確定它的行車?yán)锍痰牡燃?jí),右表是對(duì) 100 輛新車模型在一個(gè)耗油單位內(nèi)行車?yán)锍蹋▎挝唬汗铮┑臏y(cè)試結(jié)果.

(Ⅰ)做出上述測(cè)試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;

(Ⅱ)用分層抽樣的方法從行車?yán)锍淘趨^(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機(jī)抽取2輛,求其中恰有一個(gè)新車模型行車?yán)锍淘赱40,42)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=|x-m|-|2x+2m|m0).

(Ⅰ)當(dāng)m=1時(shí),求不等式fx)≥1的解集;

(Ⅱ)若xR,tR,使得fx+|t-1||t+1|,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,求的極值;

(2)若,都有成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),).

(1)當(dāng)時(shí),上是單調(diào)遞增函數(shù),求的取值范圍;

(2)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;

(3)對(duì)于任意給定的正實(shí)數(shù),證明:存在實(shí)數(shù),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】影響消費(fèi)水平的原因很多,其中重要的一項(xiàng)是工資收入.研究這兩個(gè)變量的關(guān)系的一個(gè)方法是通過(guò)隨機(jī)抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費(fèi)狀況.下面的數(shù)據(jù)是某機(jī)構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個(gè)地區(qū)的職工平均工資與城鎮(zhèn)居民消費(fèi)水平(單位:萬(wàn)元).

地區(qū)

上海

江蘇

浙江

安徽

福建

職工平均工資

9.8

6.9

6.4

6.2

5.6

城鎮(zhèn)居民消費(fèi)水平

6.6

4.6

4.4

3.9

3.8

(1)利用江蘇、浙江、安徽三個(gè)地區(qū)的職工平均工資和他們的消費(fèi)水平,求出線性回歸方程,其中,;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1萬(wàn),則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)所得的線性回歸方程是否可靠?(的結(jié)果保留兩位小數(shù))

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1,AA1ABAC2,ABAC,M是棱BC的中點(diǎn)點(diǎn)P在線段A1B

(1)若P是線段A1B的中點(diǎn),求直線MP與直線AC所成角的大小;

(2)若的中點(diǎn),直線與平面所成角的正弦值為,求線段BP的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案