已知函數(shù)f(x)=sin(
6
-2x)-2sin2x+1(x∈R)
,
(1)求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點(A,
1
2
),b,a,c
成等差數(shù)列,且
AB
AC
=9
,求a的值.
考點:三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運算,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì),解三角形
分析:(1)利用兩角和與差的三角函數(shù)以及二倍角公式化簡函數(shù)為一個角的一個三角函數(shù)的形式,通過周期公式求函數(shù)f(x)的周期,利用正弦函數(shù)的單調(diào)增區(qū)間求解函數(shù)的單調(diào)遞增區(qū)間;
(2)通過函數(shù)f(x)的圖象經(jīng)過點(A,
1
2
),b,a,c
成等差數(shù)列,求出A以及列出abc的關(guān)系,利用
AB
AC
=9
,求出bc的值,通過余弦定理求a的值.
解答: 解:f(x)=sin(
6
-2x)-2sin2x+1=-
1
2
cos2x+
3
2
sin2x+cos2x=
1
2
cos2x+
3
2
sin2x
=sin(2x+
π
6
)
…(3分)
(1)最小正周期:T=
2
,…(4分)
2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
(k∈Z)
可解得:kπ-
π
3
≤x≤kπ+
π
6
(k∈Z)
,
所以f(x)的單調(diào)遞增區(qū)間為:[kπ-
π
3
,kπ+
π
6
](k∈Z)
;       …(6分)
(2)由f(A)=sin(2A+
π
6
)=
1
2
可得:2A+
π
6
=
π
6
+2kπ或
6
+2kπ(k∈Z)

A=
π
3
,…(8分)
又∵b,a,c成等差數(shù)列,
∴2a=b+c,…(9分)
AB
AC
=bccosA=
1
2
bc=9
,
∴bc=18    …(10分)
cosA=
1
2
=
(b+c)2-a2
2bc
-1=
4a2-a2
36
-1=
a2
12
-1

a=3
2
.…(12分)
點評:本題考查三角形的解法,兩角和與差的三角函數(shù)以及二倍角公式的應(yīng)用,三角函數(shù)的圖象與性質(zhì),基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式為an=2n+4n-2,則數(shù)列{an}的前n項和sn=( 。
A、2n+2n2-1
B、2n+2n2-2
C、2n+1+2n2-1
D、2n+1+2n2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點作實軸的垂線,交雙曲線于A,B兩點,若線段AB的長度恰等于焦距,則雙曲線的離心率為( 。
A、
5
+1
2
B、
10
2
C、
17
+1
4
D、
22
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x-y+1≥0
3x+2y-6≥0
2x-y-4≤0
,則z=4x+y的最小值為( 。
A、55B、-55C、5D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||2x+1|>3},集合B={x|y=
x+1
x-2
}
,則A∩(∁RB)=( 。
A、(1,2)
B、(1,2]
C、(1,+∞)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的圖象在y軸上的截距為1,它在y軸右側(cè)的第一個最大值點和最小值點分別為(x0,2)和(x0+π,-2).
(1)求f(x)的解析式;
(2)若?m∈R,?x∈[-
π
3
,
π
3
],使f(x)≤
m
2
 
-3m-2
成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商家推出一款簡單電子游戲,彈射一次可以將三個相同的小球隨機彈到一個正六邊形的頂點與中心共七個點中的三個位置上(如圖),用S表示這三個球為頂點的三角形的面積.規(guī)定:當(dāng)三球共線時,S=0;當(dāng)S最大時,中一等獎,當(dāng)S最小時,中二等獎,其余情況不中獎,一次游戲只能彈射一次.
(Ⅰ)求甲一次游戲中能中獎的概率;
(Ⅱ)設(shè)這個正六邊形的面積是6,求一次游戲中隨機變量S的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將數(shù)列{an}中的所有項按每一行比上一行多兩項的規(guī)則排列成如圖數(shù)表,已知圖中的第一列數(shù)a1,a2,a5…構(gòu)成一個等差數(shù)列,記為數(shù)列{bn},且b2=4,b5=10,圖中每一行正中間一個數(shù)a1,a3,a7…構(gòu)成數(shù)列{cn},其前n項和為Sn
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)若圖中從第2行開始,每一行中的數(shù)按從左到右的順序均成等比數(shù)列,且公比是同一個正數(shù),已知a19=
5
2
,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A、B、C、D是空間四個不同的點,在下列命題中,不正確的是
 
(填序號).
①若AC與BD共面,則AD與BC共面;
②若AC與BD是異面直線,則AD與BC是異面直線;
③AB=AC,DB=DC,則AD=BC;
④AB=AC,DB=DC,則AD⊥BC.

查看答案和解析>>

同步練習(xí)冊答案