【題目】設數(shù)列 (n=1,2,3,…)的前n項和Sn滿足,且 , 成等差數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)求數(shù)列的前n項和.

【答案】1an2n.2

【解析】試題分析:

(1)由題意結合前n項和與通項公式的關系可得數(shù)列{an}是首項為2,公比為2的等比數(shù)列,則an=2n.

(2)結合(1)中求得的通項公式分組求和可得數(shù)列的前n項和為.

試題解析:

(1)由已知Sn=2ana1,有anSnSn-1=2an-2an-1(n≥2),

an=2an-1(n≥2),

從而a2=2a1,a3=2a2=4a1,又因為a1,a2+1,a3成等差數(shù)列,即a1a3=2(a2+1),

所以a1+4a1=2(2a1+1),解得a1=2,

所以數(shù)列{an}是首項為2,公比為2的等比數(shù)列,故an=2n.

(2)的前n項和為,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某花店每天以每枝元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.

(1)若花店一天購進枝玫瑰花,求當天的利潤(單位:元)關于當天需求量(單位:枝, )的函數(shù)解析式.

(2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量

頻數(shù)

假設花店在這天內(nèi)每天購進枝玫瑰花,求這天的日利潤(單位:元)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜過去50周的資料顯示,該地周光照量(小時)都在30小時以上,其中不足50小時的周數(shù)有5周,不低于50小時且不超過70小時的周數(shù)有35周,超過70小時的周數(shù)有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對應數(shù)據(jù)為如圖所示的折線圖

(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合的關系?請計算相關系數(shù)并加以說明(精確到0.01).(,則線性相關程度很高,可用線性回歸模型擬合)

(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數(shù)受周光照量限制,并有如下關系:

周光照量(單位:小時)

光照控制儀最多可運行臺數(shù)

3

2

1

若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.

附:相關系數(shù)公式,參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,討論函數(shù)的單調(diào)性;

2, 時,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點兩點

()求橢圓的方程及離心率;

(Ⅱ)設為第三象限內(nèi)一點且在橢圓上,橢圓y軸正半軸交于B點,直線軸交于點,直線軸交于點,求證:四邊形的面積為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標中,圓,圓

()在以O為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓的極坐標方程,并求出圓的交點坐標(用極坐標表示)

()求圓的公共弦的參數(shù)方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知向量,設,向量

(1)若,求向量的夾角;

(2)若 對任意實數(shù)都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設滿足以下兩個條件的有窮數(shù)列 , , 期待數(shù)列

;

.

)分別寫出一個單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項公式.

)記期待數(shù)列的前項和為,試證: .

查看答案和解析>>

同步練習冊答案