【題目】設(shè)是兩條不同的直線,是三個(gè)不同的平面,給出下列四個(gè)命題:

①若

②若

③若

④若

其中正確命題的序號(hào)是(

A.①和③B.②和③C.②和④D.①和④

【答案】A

【解析】

根據(jù)線面平行性質(zhì)定理,結(jié)合線面垂直的定義,可得①正確;在正方體中舉出反例,平行于同一個(gè)平面的兩條直線不一定平行,可得②錯(cuò)誤;由面面平行的傳遞性,可得③正確;在正方體中舉出反例,可得④錯(cuò)誤.

對(duì)①,因?yàn)?/span>,所以經(jīng)過(guò)作平面,使,可得,又因?yàn)?/span>,,所以,結(jié)合.由此可得①正確;

對(duì)②,設(shè)直線、是位于正方體上底面所在平面內(nèi)的相交直線,而平面是正方體下底面所在的平面,則有成立,但不能推出,故②錯(cuò)誤;

對(duì)③,因?yàn)?/span>,所以,故③正確;

對(duì)④,設(shè)平面、、是位于正方體經(jīng)過(guò)同一個(gè)頂點(diǎn)的三個(gè)面,則有,但是相交,推不出,故④錯(cuò)誤.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 的焦點(diǎn)與橢圓 的一個(gè)焦點(diǎn)重合,點(diǎn)在拋物線上,過(guò)焦點(diǎn)的直線交拋物線于、兩點(diǎn).

(Ⅰ)求拋物線的方程以及的值;

(Ⅱ)記拋物線的準(zhǔn)線軸交于點(diǎn),試問(wèn)是否存在常數(shù),使得都成立?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—5;不等式選講.

已知函數(shù)

(1)的解集非空,求實(shí)數(shù)的取值范圍;

(2)若正數(shù)滿足, 為(1)中m可取到的最大值,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,對(duì)角線AC分別與AB,AD所成的角為α,β,則sin2α+sin2β1,在長(zhǎng)方體ABCDA1B1C1D1中,對(duì)角線AC1與棱AB,AD,AA1所成的角分別為α1α2,α3,與平面AC,平面AB1,平面AD1所成的角分別為β1β2,β3,則下列說(shuō)法正確的是( 。

sin2α1+sin2α2+sin2α31 、sin2α1+sin2α2+sin2α32

cos2α1+cos2α2+cos2α31  、sin2β1+sin2β2+sin2β31

A. ①③B. ②③C. ①③④D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的一段圖象如圖所示.

1)求該函數(shù)的解析式;

2)求該函數(shù)的單調(diào)增區(qū)間;

3)該函數(shù)的圖象可由的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四面體的四個(gè)頂點(diǎn)都在半徑為的球面上,是球的直徑,且則四面體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓內(nèi)一個(gè)定點(diǎn),是圓上任意一點(diǎn).線段的垂直平分線和半徑相交于點(diǎn).

(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡是什么曲線?并求出其軌跡方程;

(Ⅱ)過(guò)點(diǎn)作直線與曲線交于、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)組織學(xué)生參加了某項(xiàng)學(xué)術(shù)能力測(cè)試,為了解參加測(cè)試學(xué)生的成績(jī)情況,從中隨機(jī)抽取20名學(xué)生的測(cè)試成績(jī)作為樣本,規(guī)定成績(jī)大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計(jì)結(jié)果如圖:

(1)求的值和樣本的平均數(shù);

(2)從該樣本成績(jī)優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績(jī)至少有一個(gè)落在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖象上,記的等差中項(xiàng)為.

)求數(shù)列的通項(xiàng)公式;

)若,求數(shù)列的前項(xiàng)和;

)設(shè)集合,,等差數(shù)列的任意一項(xiàng),其中中的最小數(shù),且,求的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案