寫出命題“若ab為偶數(shù),則a+b是偶數(shù)”的否命題

答案:
提示:

a、b不都是偶數(shù),則a+b不是偶數(shù)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列幾個(gè)命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標(biāo)系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點(diǎn)A(-2,0),B(6,8),C(8,6),則D點(diǎn)的坐標(biāo)為(0,-1);④設(shè)
a
b
,
c
為同一平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿足
a
b
不共線,
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
,
b
為鄰邊的平行四邊形的面積.其中正確命題的序號(hào)是
 
.(寫出全部正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有下列命題:
①設(shè)a,b為正實(shí)數(shù),若a2-b2=1,則a-b<1;
②已知a>2b>0,則a2+
8
b(a-2b)
的最小值為16;
③數(shù)列{n(n+4)(
2
3
)n}中的最大項(xiàng)是第4項(xiàng)
;
④設(shè)函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
,則關(guān)于x的方程f2(x)+2f(x)=0有4個(gè)解.
⑤若sinx+siny=
1
3
,則siny-cos2x的最大值是
4
3

其中的真命題有
①②③
①②③
.(寫出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有下列命題:
①設(shè)a,b為正實(shí)數(shù),若a2-b2=1,則a-b<1;
②設(shè)
a
,
b
均為單位向量,若|
a
+
b
|>1則θ∈[0,
3
)
;
③數(shù)列{n(n+4)(
2
3
)n}中的最大項(xiàng)是第4項(xiàng)
;
④設(shè)函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
,則關(guān)于x的方程f2(x)+2f(x)=0有4個(gè)解.
其中的真命題有
①②③
①②③
.(寫出所有真命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
為非零向量,下列命題:
①若
a
b
平行,則
a
b
向量的方向相同或相反;
②若
AB
=
a
CD
 =
b
,
a
b
共線,則A、B、C、D四點(diǎn)必在同一條直線上;
③若
a
b
共線,則|
a
|+| 
b
|=| 
a
+
b
|

④若|
a
+
b
|=|  
a
-
b
|
,則
a
b
;
⑤若
a
c
=
b
c
,
c
0
,則
a
=
b

其中正確的命題的編號(hào)是
①④
①④
(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
、
b
為平面向量,若存在不全為零的實(shí)數(shù)λ,μ使得λ
a
b
=0,則稱
a
、
b
線性相關(guān),下面的命題中,
a
、
b
、
c
均為已知平面M上的向量.
①若
a
=2
b
,則
a
b
線性相關(guān);
②若
a
、
b
為非零向量,且
a
b
,則
a
b
線性相關(guān);
③若
a
、
b
線性相關(guān),
b
、
c
線性相關(guān),則
a
、
c
線性相關(guān);
④向量
a
、
b
線性相關(guān)的充要條件是
a
、
b
共線.
上述命題中正確的是
 
(寫出所有正確命題的編號(hào))

查看答案和解析>>

同步練習(xí)冊答案