【題目】某養(yǎng)殖廠需定期購買飼料,已知該廠每天需要飼料200 kg,每千克飼料的價格為1.8元,飼料的保管與其他費用為平均每千克每天0.03元,購買飼料每次支付運費300元.

(1)該廠多少天購買一次飼料才能使平均每天支付的總費用最少?

(2)若提供飼料的公司規(guī)定:當(dāng)一次購買飼料不少于5 t時其價格可享受八五折優(yōu)惠(即為原價的85%).該廠是否可以考慮利用此優(yōu)惠條件?請說明理由.

【答案】(1)該場10天購買一次飼料才能使平均每天支付的總費用最少;(2)利用此優(yōu)惠條件

【解析】

試題分析】(1)借助題設(shè)條件建立函數(shù)關(guān)系,再運用基本不等式求解;(2)先建立函數(shù)關(guān)系,再運用導(dǎo)數(shù)知識分析求解:

(Ⅰ)設(shè)該場)天購買一次飼料平均每天支付的總費用最少,平均每天支付的總費用為,

因為飼料的保管費用與其他費用每天比前一天少(元),

所以天飼料的保管費與其他費用一共是(元).

從而有,

當(dāng)且僅當(dāng),即時,有最小值.

故該場10天購買一次飼料才能使平均每天支付的總費用最少.

(Ⅱ)設(shè)該場利用此優(yōu)惠條件,每隔天()購買一次飼料,平均每天支付的總費用為,

. 

,

因為,所以當(dāng)時,,即函數(shù)時是增函數(shù),

所以當(dāng)時,取得最小值,最小值為,

因為,所以該場應(yīng)考慮利用此優(yōu)惠條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 、 滿足| |=| |=1, = ,若向量 滿足| + |≤1,則| |的最大值為(
A.1
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準(zhǔn)備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設(shè)該廠用所有原來編制個花籃 個花盆.

(Ⅰ)列出滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數(shù),可使得所得利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為振興旅游業(yè),四川省2009年面向國內(nèi)發(fā)行總量為2000萬張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡稱金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡稱銀卡).某旅游公司組織了一個有36名游客的旅游團(tuán)到四川名勝旅游,其中 是省外游客,其余是省內(nèi)游客.在省外游客中有 持金卡,在省內(nèi)游客中有 持銀卡.
(Ⅰ)在該團(tuán)中隨機(jī)采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;
(Ⅱ)在該團(tuán)的省內(nèi)游客中隨機(jī)采訪3名游客,設(shè)其中持銀卡人數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ﹣2lnx,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求a的取值范圍;
(3)在(2)的條件下,證明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項和,已知a1=1,an+1=2Sn+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若 =3n﹣1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》第三章“衰分”介紹比例分配問題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(百分比)為“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6個單位,遞減的比例為40%,今共有糧m(m>0)石,按甲、乙、丙、丁的順序進(jìn)行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和為164石,則“衰分比”與m的值分別為(
A.20% 369
B.80% 369
C.40% 360
D.60% 365

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x1,x2.

求證:tan x1+tan x2>2tan.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)處的切線方程為,求的值;

(Ⅱ)討論方程的解的個數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案