7.若實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}y-x≥0\\ x+y-4≥0\\ x-3y+12≥0\end{array}\right.$,則z=2x+y-1的最大值為17.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,求出最優(yōu)解即可得到結(jié)論.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y-1得y=-2x+z-1,
平移直線(xiàn)y=-2x+z-1,
由圖象可知當(dāng)直線(xiàn)y=-2x+z-1經(jīng)過(guò)點(diǎn)A時(shí),直線(xiàn)的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{y=x}\\{x-3y+12=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=6}\end{array}\right.$,
即A(6,6),此時(shí)z=2×6+6-1=17,
故答案為:17

點(diǎn)評(píng) 本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類(lèi)問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=x4+2x3+4x2+cx的圖象關(guān)于直線(xiàn)x=m對(duì)稱(chēng),則f(x)的最小值是-$\frac{11}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,若sinAcosB=sinC,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶(hù)家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬(wàn)元)8.28.610.011.311.9
支出y(萬(wàn)元)6.27.58.08.59.8
根據(jù)上表可得回歸直線(xiàn)方程$\stackrel{∧}{y}$=a+0.76x,據(jù)此估計(jì),若該社區(qū)一戶(hù)家庭年支出為11.8萬(wàn)元,則該家庭的年收入為15萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(diǎn)(1,f(1))處的切線(xiàn)方程為x-2y-2=0.
(1)求a、b的值;
(2)當(dāng)x≥1時(shí),f(x)+$\frac{k}{x}$<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=asinx在點(diǎn)(0,0)處的切線(xiàn)方程為y=2x,則a=( 。
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在四面體S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,則該四面體外接球的表面積是( 。
A.$8\sqrt{6}π$B.$\sqrt{6}π$C.24πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若y=sin2(x4),則$\frac{dy}{dx}$=4x3sin(2x4);$\frac{kuq0aee^{2}y}{d{x}^{2}}$=12x2sin(2x4)+32x6cos(2x4);$\frac{dy}{d({x}^{2})}$=4x2sin(2x4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知直線(xiàn)3x+4y+17=0與圓x2+y2-4x+4y-17=0相交于A,B,則|AB|=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案