已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;   
(2)求不等式f(x)>3+f(x-2)的解集.

解:(1)由題意得f(8)=f(4×2)
=f(4)+f(2)
=f(2×2)+f(2)
=f(2)+f(2)+f(2)
=3f(2),
又∵f(2)=1,
∴f(8)=3…(6分)
(2)不等式化為f(x)>f(x-2)+3
∵f(8)=3,
∴f(x)>f(x-2)+f(8)=f(8x-16)…(8分)
∵f(x)是(0,+∞)上的增函數(shù)
∴解得2<x<
∴不等式f(x)>3+f(x-2)的解集為{x|2<x<}…(12分)
分析:(1)令x=y=2,可求得f(4),繼而可求得f(8)的值;
(2)由(1)f(8)=3,可求得f(x)>3+f(x-2)?f(x)>f(8x-16),利用f(x)是定義在(0,+∞)上的增函數(shù)即可求得答案.
點(diǎn)評:本題考查抽象函數(shù)及其應(yīng)用,考查賦值法與函數(shù)單調(diào)性的性質(zhì),求得f(8)=3是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊答案