(2008•奉賢區(qū)模擬)正方體中,連接相鄰兩個(gè)面的中心的連線可以構(gòu)成一個(gè)美麗的幾何體.若正方體的邊長(zhǎng)為1,則這個(gè)美麗的幾何體的體積為
1
6
1
6
分析:構(gòu)成的八面體可以看作是由兩個(gè)正四棱錐組成,一個(gè)正四棱錐的高等于正方體棱長(zhǎng)的一半
1
2
,正四棱錐的底面邊長(zhǎng)根據(jù)勾股定理可知是
2
2
,做出正四棱錐的體積,得到正八面體的體積
解答:解:∵正方體的棱長(zhǎng)是1,
構(gòu)成的八面體可以看作是由兩個(gè)正四棱錐組成,
以上面一個(gè)正四棱錐為例,
它的高等于正方體棱長(zhǎng)的一半
1
2

正四棱錐的底面邊長(zhǎng)根據(jù)勾股定理可知是
2
2
,
∴這個(gè)正四棱錐的體積是
1
3
×
2
2
× 
2
2
× 
1
2
=
1
12

∴構(gòu)成的八面體的體積是2×
1
12
=
1
6

故答案為:
1
6
點(diǎn)評(píng):本題考查棱錐的體積,考查正方體的內(nèi)接體問(wèn)題,考查計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2n-1,則a7=
64
64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)函數(shù)f(x)=
x2+x-2
的定義域?yàn)?!--BA-->
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)函數(shù)f(x)=x(1-x),x∈(0,1)的最大值為
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)一模)我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對(duì)任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)設(shè)函數(shù)g(x)=-x2,求證:g(x)∈M.
(3)已知函數(shù)f(x)=log2x∈M.試?yán)么私Y(jié)論解決下列問(wèn)題:若實(shí)數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)一模)我們規(guī)定:對(duì)于任意實(shí)數(shù)A,若存在數(shù)列{an}和實(shí)數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡(jiǎn)記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個(gè)2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進(jìn)制的簡(jiǎn)記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求證:bn=
2
7
8n-
2
7

(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步練習(xí)冊(cè)答案