【題目】已知定義在上的函數(shù)和數(shù)列滿足下列條件:,當時,,其中、均為非零常數(shù).

1)若是等差數(shù)列,求實數(shù)的值;

2)令),若,求數(shù)列的通項公式;

3)令),若,數(shù)列滿足,若數(shù)列有最大值,最小值,且,求的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)題意,利用等差數(shù)列的定義,求得結(jié)果;

2)根據(jù)題意,證得數(shù)列是等比數(shù)列,利用等比數(shù)列的通項公式求得結(jié)果;

3)利用累加法求得的通項公式,結(jié)合題意,找到數(shù)列的最大項和最小項,解不等式求得結(jié)果.

1)由已知,

,

由數(shù)列是等差數(shù)列,得,

,所以;

2)由,可得,

時,,

所以當時,,

所以,數(shù)列是首項為1,共比為的等比數(shù)列,

所以;

3)由(2)可得是以為首項,以為公比的等比數(shù)列,

所以

所以,

所以,

,,

累加得:

,

所以,當時也滿足,

所以

存在最大值,結(jié)合的條件,則

所以是最大項,是最小項,

所以,

,解得,

所以的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)某公司生產(chǎn)的商品A每件售價為5元時,年銷售10萬件,

(1)據(jù)市場調(diào)查,若價格每提高一元,銷量相應減少1萬件,要使銷售收入不低于原銷售收入,該商品的銷售價格最多提高多少元?

(2)為了擴大該商品的影響力,公司決定對該商品的生產(chǎn)進行技術革新,將技術革新后生產(chǎn)的商品售價提高到每件元,公司擬投入萬元作為技改費用,投入萬元作為宣傳費用。試問:技術革新后生產(chǎn)的該商品銷售量m至少應達到多少萬件時,才可能使技術革新后的該商品銷售收入等于原銷售收入與總投入之和?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的極小值點,求實數(shù)的取值范圍及函數(shù)的極值;

Ⅱ)當,求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著智能手機和電子閱讀器越來越普及,人們的閱讀習慣也發(fā)生了改變,手機和電子閱讀產(chǎn)品方便易攜帶,越來越多的人習慣通過手機或電子閱讀器閱讀.某電子書閱讀器廠商隨機調(diào)查了人,統(tǒng)計了這人每日平均通過手機或電子閱讀器閱讀的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知閱讀時間在, 三組對應的人數(shù)依次成等差數(shù)列.

(1)求頻率分布直方圖中, 的值;

(2)若將日平均閱讀時間不少于分鐘的用戶定義為“電子閱讀發(fā)燒友”,將日平均閱讀時間少于分鐘的用戶定義為“電子閱讀潛在愛好者”,現(xiàn)從上述“電子閱讀發(fā)燒友”與“電子閱讀潛在愛好者”的人中按分層抽樣選出人,再從這人中任取人,求恰有人為“電子閱讀發(fā)燒友”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點.

1)求證: 平面;

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.

)求橢圓C的方程;

)點P(2,3)Q2,-3)在橢圓上,A,B是橢圓上位于直線PQ兩惻的動點,

若直線AB的斜率為,求四邊形APBQ面積的最大值;

A、B運動時,滿足于∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, 是坐標原點,設函數(shù)的圖象為直線,且軸、軸分別交于、兩點,給出下列四個命題:

存在正實數(shù),使的面積為的直線僅有一條;

存在正實數(shù),使的面積為的直線僅有二條;

存在正實數(shù),使的面積為的直線僅有三條;

存在正實數(shù),使的面積為的直線僅有四條.

其中,所有真命題的序號是( ).

A. ①②③ B. ③④ C. ②④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+cosx)2-cos2x.

(I)求f(x)的最小正周期;

(II)求證:當x∈[0, ]時,f(x)≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象過原點,且在處取得極值,直線與曲線在原點處的切線互相垂直.

求函數(shù)的解析式;

若對任意實數(shù)的,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案