已知等差數(shù)列的首項,公差,且第項、第項、第項分別是等比數(shù)列的第項、第項、第項.
(1)求數(shù)列,的通項公式;
(2)設數(shù)列,均有成立,求
(1);(2)

試題分析:(1)由已知條件知成等比數(shù)列,聯(lián)立可求得公差,又,所以;  又,知,所以數(shù)列的通項公式為;
(2)寫出當時的式子,兩式相減得,整理得,所以.
試題解析:(1)
解得
 又
所以,等比數(shù)列的公比
(2) 時,
兩式相減,得 
時,不滿足上式 故
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列滿足:
(1)令,判斷是否為等差數(shù)列,并求出
(2)記的前項的和為,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是各項為不同的正數(shù)的等差數(shù)列,成等差數(shù)列,又
(1)證明:為等比數(shù)列;
(2)如果數(shù)列前3項的和為,求數(shù)列的首項和公差;
(3)在(2)小題的前題下,令為數(shù)列的前項和,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

數(shù)列中各項為正數(shù),為其前n項和,對任意,總有成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)是否存在最大正整數(shù)p,使得命題“,”是真命題?若存在,求出p;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列的前項和,且滿足.
(1)求數(shù)列的通項.
(2)若數(shù)列滿足,為數(shù)列{}的前項和,求證.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

數(shù)列中,,且(,),則這個數(shù)列的______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知{an}為等差數(shù)列,且a7﹣2a4=﹣1,a3=0,則公差d=( 。
A.﹣2B.﹣C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知數(shù)列{an}滿足an=an-1-an-2(n≥3,n∈N*),它的前n項和為Sn.若S9=6,S10=5,則a1的值為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列中,a1=1,d=3,an=298,則n的值等于(  )
A.98B. 100C.99D.101

查看答案和解析>>

同步練習冊答案