(本題滿分12分)已知數(shù)列滿足遞推關(guān)系.
(1)在時(shí),求數(shù)列的通項(xiàng);(2) 當(dāng)時(shí),數(shù)列滿足不等式恒成立,求的取值范圍;(3) 在時(shí),證明:.
(Ⅰ)   (Ⅱ)   (Ⅲ)見(jiàn)解析
(1)……4分
(2)由,而,,,,
恒成立,,即.……8分
(3) 由(2)得當(dāng)時(shí)知,設(shè)數(shù)列,,
.
,故,
,
     ………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知曲線.從點(diǎn)向曲線引斜率為的切線,切點(diǎn)為。
(1)求數(shù)列的通項(xiàng)公式;
(2)證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列中,且滿足
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)的解析式;
(Ⅲ)設(shè)計(jì)一個(gè)求的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)設(shè)函數(shù)f (x)滿足f (0) =1,且對(duì)任意,都有f (xy+1) = f (x) f (y)-f (y)-x+2.(I)      求f (x) 的解析式;(II)  若數(shù)列{an}滿足:an+1=3f (an)-1(nÎ N*),且a1=1,求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的方程x2-3xa=0和x2-3xb=0(ab)的四個(gè)根組成首項(xiàng)為的等差數(shù)列,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列的首項(xiàng)為a,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a,其中ab都是大于1的正整數(shù),且
(1)求a的值;
(2)若對(duì)于任意的,總存在,使得成立,求b的值;
(3)令,問(wèn)數(shù)列中是否存在連續(xù)三項(xiàng)成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系上,設(shè)不等式組
所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133102998214.gif" style="vertical-align:middle;" />,記內(nèi)的整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為.
(Ⅰ)求并猜想的表達(dá)式再用數(shù)學(xué)歸納法加以證明;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和,是否存在自然數(shù)m?使得對(duì)一切,恒成立。若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.已知二次函數(shù)經(jīng)過(guò)點(diǎn)(0,10),其導(dǎo)數(shù),當(dāng))時(shí),是整數(shù)的個(gè)數(shù)記為。
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)()項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列中,,若,則數(shù)列的前5項(xiàng)和等于(   )
A.30B.45C.90D.186

查看答案和解析>>

同步練習(xí)冊(cè)答案