【題目】在四棱錐中,底面為正方形,平面平面,且為等邊三角形,若四棱錐的體積與四棱錐外接球的表面積大小之比為,則四棱錐的表面積為___________.
【答案】
【解析】
設(shè)四棱錐外接球的球心為,等邊三角形外接圓的圓心為,則為 的重心,可證四邊形 為矩形,所以.設(shè)正方形 的邊長(zhǎng)為,則,所以,,得到四棱錐 外接球的表面積和體積為,結(jié)合題目條件解得,求出四棱錐 的各個(gè)面的面積,從而求出四棱錐 的表面積.
如圖,
連接,交于點(diǎn),取的中點(diǎn)為,連接.
設(shè)四棱錐外接球的球心為,等邊三角形外接圓的圓心為,
則為的重心,則,正方形外接圓的圓心為.
因?yàn)?/span>,平面平面,
所以平面,所以,
所以四邊形為矩形,
所以.
設(shè)正方形的邊長(zhǎng)為,則,
所以,,
所以四棱錐外接球的半徑為,
所以四棱錐外接球的表面積為,
四棱錐的體積為,
所以,即,解得,
所以正方形的邊長(zhǎng)為2,所以,
所以四棱錐的表面積為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)3元錢(qián)可購(gòu)買(mǎi)一次游戲機(jī)會(huì),每次游戲中,顧客從標(biāo)有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機(jī)抽取2張,并根據(jù)摸出的卡片的情況進(jìn)行兌獎(jiǎng),經(jīng)營(yíng)者將顧客抽到的卡片情況分成以下類(lèi)別::同花順,即卡片顏色相同且號(hào)碼相鄰;:同花,即卡片顏色相同,但號(hào)碼不相鄰;:順子,即卡片號(hào)碼相鄰,但顏色不同;:對(duì)子,即兩張卡片號(hào)碼相同;:其它,即,,,以外的所有可能情況,若經(jīng)營(yíng)者打算將以上五種類(lèi)別中最不容易發(fā)生的一種類(lèi)別對(duì)應(yīng)顧客中一等獎(jiǎng),最容易發(fā)生的一種類(lèi)別對(duì)應(yīng)顧客中二等獎(jiǎng),其他類(lèi)別對(duì)應(yīng)顧客中三等獎(jiǎng).
(1)一、二等獎(jiǎng)分別對(duì)應(yīng)哪一種類(lèi)別?(寫(xiě)出字母即可)
(2)若經(jīng)營(yíng)者規(guī)定:中一、二、三等獎(jiǎng),分別可獲得價(jià)值9元、3元、1元的獎(jiǎng)品,假設(shè)某天參與游戲的顧客為300人次,試估計(jì)經(jīng)營(yíng)者這一天的盈利.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且直線的斜率為1,當(dāng)直線過(guò)點(diǎn)時(shí),.
(1)求拋物線的方程;
(2)若,直線與交于點(diǎn),,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,底面是等腰梯形,,點(diǎn)為的中點(diǎn),以為邊作正方形,且平面平面.
(1)證明:平面平面.
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校有40名高中生參加足球特長(zhǎng)生初選,第一輪測(cè)身高和體重,第二輪足球基礎(chǔ)知識(shí)問(wèn)答,測(cè)試員把成績(jī)(單位:分)分組如下:第1組,第2組,第3組,第4組,第5組,得到頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖估計(jì)成績(jī)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)用分層抽樣的方法從成績(jī)?cè)诘?/span>3,4,5組的高中生中抽取6名組成一個(gè)小組,若再?gòu)倪@6人中隨機(jī)選出2人擔(dān)任小組負(fù)責(zé)人,求這2人來(lái)自第3,4組各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】十九大提出對(duì)農(nóng)村要堅(jiān)持精準(zhǔn)扶貧,至2020年底全面脫貧.現(xiàn)有扶貧工作組到某山區(qū)貧困村實(shí)施脫貧工作.經(jīng)摸底排查,該村現(xiàn)有貧閑農(nóng)戶100家,他們均從事水果種植,2017年底該村平均每戶年純收入為1萬(wàn)元.扶貧工作組一方面請(qǐng)有關(guān)專(zhuān)家對(duì)果樹(shù)進(jìn)行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷(xiāo)售工作,其人數(shù)必須小于種植的人數(shù).從2018年初開(kāi)始,該村抽出戶()從事水果包裝、銷(xiāo)售.經(jīng)測(cè)算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷(xiāo)售農(nóng)戶的年純收入每戶平均為萬(wàn)元(參考數(shù)據(jù):).
(1)至2020年底,為使從事水果種植農(nóng)戶能實(shí)現(xiàn)脫貧(每戶年均純收入不低于1萬(wàn)5千元),則應(yīng)至少抽出多少戶從事包裝、銷(xiāo)售工作?
(2)至2018年底,該村每戶年均純收人能否達(dá)到1.355萬(wàn)元?若能,請(qǐng)求出從事包裝、銷(xiāo)售的戶數(shù);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S-ABCD中,底面ABCD是菱形,,為等邊三角形,G是線段SB上的一點(diǎn),且SD//平面GAC.
(1)求證:G為SB的中點(diǎn);
(2)若F為SC的中點(diǎn),連接GA,GC,FA,FG,平面SAB⊥平面ABCD,,求三棱錐F-AGC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線Γ的準(zhǔn)線方程為.焦點(diǎn)為.
(1)求證:拋物線Γ上任意一點(diǎn)的坐標(biāo)都滿足方程:
(2)請(qǐng)求出拋物線Γ的對(duì)稱(chēng)性和范圍,并運(yùn)用以上方程證明你的結(jié)論;
(3)設(shè)垂直于軸的直線與拋物線交于兩點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com