已知a1,a2,a3,a4成等差數(shù)列,且a1,a4為方程2x2-5x+2=0的兩個(gè)根,則a2+a3等于( 。
A、-1
B、1
C、-
5
2
D、
5
2
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)可得a2+a3=a1+a4,由韋達(dá)定理可得a1+a4=
5
2
,故可得a2+a3=
5
2
解答: 解:∵a1,a2,a3,a4成等差數(shù)列,
∴由等差數(shù)列的性質(zhì)可得a2+a3=a1+a4,
又∵a1,a4為方程2x2-5x+2=0的兩個(gè)根,
∴由韋達(dá)定理可得a1+a4=
5
2

∴a2+a3=
5
2

故選:D
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和韋達(dá)定理,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是R上的單調(diào)遞增函數(shù),若A(-2,-4),B(0,4)是其圖象上的兩點(diǎn),則不等式|f(x-2)|≤4的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(n,an)(n∈N*)都在直線3x-y-24=0上,那么數(shù)列{an}中有(  )
A、a7+a9>0
B、a7+a9<0
C、a7+a9=0
D、a7•a9=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan(α+
π
4
)=
1
3
,α∈(0,π),則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=(3,1),
OB
=(λ,4),若
OA
AB
,則實(shí)數(shù)λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,0≤x<π時(shí),f(x)=0,則f(
11π
6
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若S9=12,則下列各式一定為定值的是( 。
A、a3+a8
B、a10
C、a3+a5+a7
D、a2+a7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=|log2X|的單調(diào)遞增區(qū)間是( 。
A、(0,
1
2
]
B、(0,1]
C、(0,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={-1,1,2},B={2,3},則A∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案