等差數(shù)列{an}的前n項和為sna1=1+ 
2
,s2=9+3 
2

(1)求數(shù)列{an}的通項an與前n項和為sn
(2)設bn
sn
n
(n∈N+),求證:數(shù)列{bn}中任意不同的三項都不可能成為等比數(shù)列.
(1)由已知得
a1=
2
+1
3a1+3d=9+3
2
,∴d=2,
an=2n-1+
2
,Sn=n(n+
2
)

(2)由(Ⅰ)得bn=
Sn
n
=n+
2

假設數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則bq2=bpbr
(q+
2
)2=(p+
2
)(r+
2
)

(q2-pr)+(2q-p-r)
2
=0
,
∵p,q,r∈N*
q2-pr=0
2q-p-r=0
,
(
p+r
2
)2=pr,(p-r)2
=0,
∴p=r.
與p≠r矛盾.
所以數(shù)列{bn}中任意不同的三項都不可能成等比數(shù)列.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若-a7<a1<-a8,則必定有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且滿足a2=6,S5=50,數(shù)列{bn}的前n項和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅲ)記cn=
1
4
anbn
,數(shù)列{cn}的前n項和為Rn,若Rn<λ對n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前2006項的和S2006=2008,其中所有的偶數(shù)項的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn;
(Ⅱ)設cn=an+2bn(n∈N*),數(shù)列{cn}的前n項和為Tn.若對一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,則a5+a6>0是S8≥S2的( 。
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習冊答案