解:(Ⅰ)由題意得f
′(x)=3ax
2-12ax+3b,f
′(2)=-3且f(2)=5
∴
∴a=1,b=3
∴f(x)=x
3-6x
2+9x+3
(Ⅱ)既考慮方程m=f(x)在區(qū)間[
,4]上恰由兩個(gè)不等實(shí)根的情形
∵f(x)=x
3-6x
2+9x+3
∴f
′(x)=3(x-1)(x-3)
令f
′(x)>0則x<1或x>3而x∈[
,4]∴
<x<1或3<x<4即f(x)在x∈[
,1)和x∈(3,4]上單調(diào)遞增
令f
′(x)<0則1<x<3∴f(x)在x∈(1,3)上單調(diào)遞減
∴當(dāng)x=1時(shí)f(x)取得極大值f(1)=7,當(dāng)x=3時(shí)f(x)取得極小值f(3)=3
∵f(
)=
,f(4)=7
∴可作出函數(shù)f(x)在區(qū)間[
,4]上的圖象
如圖可知,當(dāng)方程f(x)-m=0在[
,4]上恰由兩個(gè)不等實(shí)根的情時(shí)實(shí)數(shù)m的取值范圍是3<m<
或m=7
(Ⅲ)存在對(duì)稱(chēng)中心,其坐標(biāo)為(2,5)
由(Ⅱ)知,f
′(x)=3(x-1)(x-3)
∴當(dāng)x<1或x>3時(shí)f
′(x)>0,當(dāng)1<x<3時(shí)f
′(x)<0故可知函數(shù)f(x)的極值點(diǎn)為A(1,7),B(3,3),線段AB的中點(diǎn)P(2,5)在曲線y=f(x)上,且該曲線關(guān)于點(diǎn)P(2,5)成中心對(duì)稱(chēng),證明如下:
∵f(x)=x
3-6x
2+9x+3
∴f(4-x)=(4-x)
3-6(4-x)
2+9(4-x)+3=-x
3+6x
2-9x+7
∴f(x)+f(4-x)=10
上式表明若點(diǎn)A(x,y)為曲線y=f(x)上任一點(diǎn),其關(guān)于點(diǎn)P(2,5)的對(duì)稱(chēng)點(diǎn)A(4-x,10-y)也在曲線y=f(x)上,則曲線y=f(x)關(guān)于點(diǎn)P(2,5)對(duì)稱(chēng)
分析:(Ⅰ)易求切點(diǎn)為(2,5)則f(2)=5①,然后再根據(jù)導(dǎo)數(shù)的幾何意義可得f
′(2)=-3②根據(jù)①②即可求出a,b的值從而可求出函數(shù)f(x)的解析式.
(Ⅱ)問(wèn)題即求方程m=f(x)在區(qū)間[
,4]上恰由兩個(gè)不等實(shí)根而解決這類(lèi)問(wèn)題常用數(shù)形結(jié)合的方法即根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)性作出函數(shù)f(x)的簡(jiǎn)圖然后平行移動(dòng)直線y=m使得其與f(x)有兩個(gè)不同的交點(diǎn)所對(duì)應(yīng)的m的范圍即為所求.
(Ⅲ)若函數(shù)y=f(x)圖象存在對(duì)稱(chēng)中心則其極值點(diǎn)也關(guān)于此中心對(duì)稱(chēng),故可先求出函數(shù)f(x)的極值點(diǎn)然后利用中點(diǎn)坐標(biāo)公式求出的中點(diǎn)即為對(duì)稱(chēng)中心然后在利用對(duì)稱(chēng)的定義證明則曲線y=f(x)關(guān)于此點(diǎn)對(duì)稱(chēng)即可.
點(diǎn)評(píng):本題主要考查了導(dǎo)數(shù)的幾何意義,數(shù)形結(jié)合思想的應(yīng)用,以及曲線的對(duì)稱(chēng)中心的求解與證明.解題的關(guān)鍵是要理解導(dǎo)數(shù)的幾何意義同時(shí)要掌握方程的根的個(gè)數(shù)與所對(duì)應(yīng)的函數(shù)的交點(diǎn)的個(gè)數(shù)是對(duì)應(yīng)的這個(gè)轉(zhuǎn)化思想!