(本題8分)

已知直線(為參數(shù)),圓(為參數(shù)).

(Ⅰ)當時,試判斷直線與圓的位置關系;

(Ⅱ)若直線與圓截得的弦長為1,求直線的普通方程.

 

【答案】

解:(Ⅰ)當時,直線的普通方程為,圓的普通方程為

圓心(0,0)到直線的距離.  所以直線與圓相切.

(Ⅱ)若直線與圓截得的弦長為1,則圓心(0,0)到直線的距離,

直線的普通方程為

,

所以,直線的普通方程為

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011-2012學年上海市高三模擬考試理科數(shù)學 題型:解答題

(本題滿分18分,其中第1小題4分,第2小題6分,第,3小題8分)

一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標依次是,(如圖所示,坐標以已知條件為準),表示青蛙從點到點所經(jīng)過的路程。

(1) 若點為拋物線準線上

一點,點,均在該拋物線上,并且直線經(jīng)

過該拋物線的焦點,證明.

(2)若點要么落在所表示的曲線上,

要么落在所表示的曲線上,并且,

試寫出(不需證明);

(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達式.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�