如果復(fù)數(shù)
2-bi
1+2i
>0,則實(shí)數(shù)b=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:先把復(fù)數(shù)的分母實(shí)數(shù)化,再令實(shí)部等于0,驗(yàn)證求出的結(jié)果是否滿足條件即可.
解答: 解:∵復(fù)數(shù)
2-bi
1+2i
>0,
(2-bi)(1-2i)
12-(2i)2
=
(2-2b)-(b+4)i
5
>0,
b+4=0
2-2b>0
,
解得b=-4.
故答案為:-4.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的運(yùn)算問題,解題時(shí)應(yīng)按照復(fù)數(shù)的運(yùn)算法則進(jìn)行計(jì)算,即可得出正確的答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)民生所望,相關(guān)部門對(duì)所屬單位進(jìn)行整治性核查,標(biāo)準(zhǔn)如下表:
查驗(yàn)類別
所含指標(biāo)項(xiàng)42
每項(xiàng)初查合格率 
2
3
 
1
2
每項(xiàng)復(fù)查合格率 
1
2
 
1
2
每項(xiàng)核查合格權(quán)重分?jǐn)?shù) 2 1
每項(xiàng)核查不合格權(quán)重分?jǐn)?shù) 0 0
規(guī)定初查累計(jì)權(quán)重分?jǐn)?shù)為10分或9分的不需要復(fù)查并給予獎(jiǎng)勵(lì),10分的獎(jiǎng)勵(lì)18萬元;9分的獎(jiǎng)勵(lì)8萬元;初查累計(jì)權(quán)重分?jǐn)?shù)為7分及其以下的停下運(yùn)營并罰款1萬元;初查累計(jì)權(quán)重分?jǐn)?shù)為8分的要對(duì)不合格指標(biāo)進(jìn)行復(fù)查,最終累計(jì)權(quán)重得分等于初查合格部分與復(fù)查部分得分的和,最終累計(jì)權(quán)重分?jǐn)?shù)為10分方可繼續(xù)運(yùn)營,否則停業(yè)運(yùn)營并罰款1萬元.
(1)求一家單位既沒獲獎(jiǎng)勵(lì)又沒被罰款的概率;
(2)求一家單位在這次整治性核查中所獲金額X(萬元)的分布列和數(shù)學(xué)期望(獎(jiǎng)勵(lì)為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=3,b=5,C=120°,則
sinA
sinB
=
 
,c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y滿足條件:
2x-y-3≤0
x+3y-3≤0
y≥0
,則x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

樓道里有12盞燈,為了節(jié)約用電,需關(guān)掉3盞不相鄰的燈,則不同的關(guān)燈方案有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按如圖表示的算法,若輸入一個(gè)小于10的正整數(shù)n,則輸出n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①某中學(xué)高三(1)班有學(xué)生m人,現(xiàn)按座位號(hào)的編號(hào)采用系統(tǒng)抽樣的方法選取5名同學(xué)參加一項(xiàng)活動(dòng),已知座位號(hào)為5號(hào)、16號(hào)、27號(hào)、38號(hào)、49號(hào)的同學(xué)均被選出,則該班的學(xué)生人數(shù)m的取值范圍為[55,59];
②有一個(gè)容量為200的樣本,其頻率分布直方圖如圖所示,根據(jù)樣本的頻率分布直方圖估計(jì),樣本數(shù)據(jù)落在區(qū)間[10,12)內(nèi)的頻數(shù)為20;
③已知圓C:x2+y2=12,直線l:4x+3y=25.圓C上任意一點(diǎn)A到直線l的距離小于2的概率為
1
6

④已知回歸直線y=bx+a的回歸系數(shù)b的估計(jì)值是1.23,
.
y
=5,
.
x
=4,則回歸直線方程是y=1.23x+0.08.
正確命題的序號(hào)為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩圓x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三條公切線,其中a,b∈R,ab≠0,則
4
a2
+
1
b2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長(zhǎng)為10cm的線段AB上任取一點(diǎn)C,現(xiàn)作一個(gè)矩形,鄰邊長(zhǎng)分別等于線段AC、CB的長(zhǎng),則該矩形的面積大于24cm2的概率是( 。
A、
1
6
B、
1
5
C、
1
4
D、
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案