15.下列說法正確的是( 。
A.“x2+x-2>0”是“x>1”的充分不必要條件
B.“若am2<bm2,則a<b”的逆否命題為真命題
C.命題“?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1>0”
D.命題“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題

分析 根據(jù)充要條件的定義,可判斷A;寫出原命題的逆否命題,可判斷B;寫出原命題的否定命題,可判斷C;寫出原命題的逆命題,可判斷D.

解答 解:選項(xiàng)A,x2+x-2>0,解得x<-2或x>1,故“x2+x-2>0”是“x>1”的必要不充分條件,故A錯誤;
選項(xiàng)B,“若am2<bm2,則a<b”的逆否命題為“若a≥b,則am2≥bm2”為真命題,故B正確;
選項(xiàng)C,命題““?x∈R,使得2x2-1<0”的否定是“?x∈R,均有2x2-1≥0”,故C錯誤;
選項(xiàng)D,命題“若x=$\frac{π}{4}$,則tanx=1”的逆命題“若tanx=1,則x=$\frac{π}{4}$”,因?yàn)閠anx=1,則x=$\frac{π}{4}$+kπ,k∈Z”,故D錯誤,
故選B.

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了全稱命題,特稱命題,充要條件,四種命題等知識點(diǎn),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}}\right.$,記z=ax-y(其中a>0)的最小值為f(a).若$f(a)≥\frac{3}{5}$,則實(shí)數(shù)a的最小值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若m、n為兩條不重合的直線,α、β為兩個不重合的平面,則下列命題中正確的是( 。
A.若m、n都平行于平面α,則m、n一定不是相交直線
B.若m、n都垂直于平面α,則m、n一定是平行直線
C.已知α、β互相平行,m、n互相平行,若m∥α,則n∥β
D.若m、n在平面α內(nèi)的射影互相平行,則m、n互相平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=x3+x,函數(shù)g(x)滿足g(x)+g(2-x)=0,若函數(shù)h(x)=g(x)-f(x-1)有10個零點(diǎn),則所有零點(diǎn)之和為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=lg(1-x2),集合A為函數(shù)f(x)的定義域,集合B=(-∞,0]則圖中陰影部分表示的集合為( 。
A.[-1,0]B.(-1,0)C.(-∞,-1)∪[0,1)D.(-∞,-1]∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:函數(shù)y=${log_{\frac{1}{2}}}({{x^2}+2x+a})$的值域R,命題q:函數(shù)y=x2a-5在(0,+∞)上是減函數(shù).若p∧?q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列圖形中,表示函數(shù)圖象的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=loga(x+m),g(x)=loga(1-x)其中a>1.若函數(shù)F(x)=f(x)-g(x)的零點(diǎn)是0
(1)求m 的值及函數(shù)F(x)定義域;
(2)判斷F(x)的奇偶性,并說明理由;
(3)求使F(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x≥1}\\{-x+1,x<1}\end{array}\right.$,則滿足方程f[f(m)]=log${\;}_{\frac{1}{2}}$f(m)的m的取值范圍是(-∞,0].

查看答案和解析>>

同步練習(xí)冊答案