設(shè)f(x)是可導函數(shù),且
lim
△x→0
f(x0)-f(x0+△x)
2△x
=2,f′(x0)
=( 。
A、-4
B、-1
C、0
D、
1
2
分析:由導數(shù)的概念知f′(x0)=
lim
-△x→∞
f(x0)-f(x0+△x) 
-△x
,由此結(jié)合題設(shè)條件能夠?qū)С鰂′(x0)的值.
解答:解:∵-
1
2
lim
-△x→∞
f(x0)-f(x0+△x) 
-△x
=2,
∴f′(x0)=
lim
-△x→∞
f(x0)-f(x0+△x) 
-△x
=-4
故選A.
點評:本題考查導數(shù)的概念,解題時要注意極限的應用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是可導函數(shù),且
lim
△x→0
f(x0-△x)-f(x0+2△x)
△x
=3
,則f′(x0)=(  )
A、
1
2
B、-1
C、0
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是可導函數(shù),若當△x→0時,
f(x0-2△x)-f(x0)△x
→2,則f′(x0)
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是可導函數(shù),且
lim
△x→0
f(x0-2△x)-f(x0)
△x
=2,則f′(x0)
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)f(x)是可導函數(shù),若當△x→0時,
f(x0-2△x)-f(x0)
△x
→2,則f′(x0)
=______.

查看答案和解析>>

同步練習冊答案