【題目】在平面直角坐標(biāo)中,圓與圓相交與兩點(diǎn).
(I)求線段的長.
(II)記圓與軸正半軸交于點(diǎn),點(diǎn)在圓C上滑動(dòng),求面積最大時(shí)的直線的方程.
【答案】(I);(II)或.
【解析】
(I)先求得相交弦所在的直線方程,再求得圓的圓心到相交弦所在直線的距離,然后利用直線和圓相交所得弦長公式,計(jì)算出弦長.(II)先求得當(dāng)時(shí),取得最大值,根據(jù)兩直線垂直時(shí)斜率的關(guān)系,求得直線的方程,聯(lián)立直線的方程和圓的方程,求得點(diǎn)的坐標(biāo),由此求得直線的斜率,進(jìn)而求得直線的方程.
(I)由圓O與圓C方程相減可知,相交弦PQ的方程為.
點(diǎn)(0,0)到直線PQ的距離,
(Ⅱ),.
當(dāng)時(shí),取得最大值.
此時(shí),又則直線NC為.
由,或
當(dāng)點(diǎn)時(shí),,此時(shí)MN的方程為.
當(dāng)點(diǎn)時(shí),,此時(shí)MN的方程為.
∴MN的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式.
(1)當(dāng)時(shí),解不等式;
(2)如果不等式的解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個(gè)產(chǎn)品有若干零部件構(gòu)成,加工時(shí)需要經(jīng)過7道工序,分別記為.其中,有些工序因?yàn)槭侵圃觳煌牧悴考,所以可以在幾臺(tái)機(jī)器上同時(shí)加工;有些工序因?yàn)槭菍?duì)同一個(gè)零部件進(jìn)行處理,所以存在加工順序關(guān)系,若加工工序必須要在工序完成后才能開工,則稱為的緊前工序.現(xiàn)將各工序的加工次序及所需時(shí)間(單位:小時(shí))列表如下:
工序 | |||||||
加工時(shí)間 | 3 | 4 | 2 | 2 | 2 | 1 | 5 |
緊前工序 | 無 | 無 |
現(xiàn)有兩臺(tái)性能相同的生產(chǎn)機(jī)器同時(shí)加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時(shí)間是( )
(假定每道工序只能安排在一臺(tái)機(jī)器上,且不能間斷.)
A. 11個(gè)小時(shí) B. 10個(gè)小時(shí) C. 9個(gè)小時(shí) D. 8個(gè)小時(shí)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔仔細(xì)算相還”,其大意為:“有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,則該人第五天走的路程為( )
A. 6里B. 12里C. 24里D. 48里
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某設(shè)計(jì)師設(shè)計(jì)的型飾品的平面圖,其中支架,,兩兩成,,,且.現(xiàn)設(shè)計(jì)師在支架上裝點(diǎn)普通珠寶,普通珠寶的價(jià)值為,且與長成正比,比例系數(shù)為(為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價(jià)值為,且與的面積成正比,比例系數(shù)為.設(shè),.
(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(2)求的最大值及相應(yīng)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為數(shù)列的前項(xiàng)和,,,若關(guān)于正整數(shù)的不等式的解集中的整數(shù)解有兩個(gè),則正實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(wx+φ)(w>0,0<φ<π)的周期為π,圖象的一個(gè)對(duì)稱中心為( ,0),將函數(shù)f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè) 單位長度后得到函數(shù)g(x)的圖象.
(1)求函數(shù)f(x)與g(x)的解析式
(2)是否存在x0∈( ),使得f(x0),g(x0),f(x0)g(x0)按照某種順序成等差數(shù)列?若存在,請(qǐng)確定x0的個(gè)數(shù),若不存在,說明理由;
(3)求實(shí)數(shù)a與正整數(shù)n,使得F(x)=f(x)+ag(x)在(0,nπ)內(nèi)恰有2013個(gè)零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com