解答:解:(1)f(x)的定義域為(0,+∞).f′(x)=-
+1+
=
,
①若-1<a<0,則當0<x<-a時,f′(x)>0;當-a<x<1時,f′(x)<0;當x>1時,f′(x)>0.故f(x)分別在(0,-a),(1,+∞)上單調(diào)遞增,在(-a,1)上單調(diào)遞減.
②若a<-1,仿①可得f(x)分別在(0,1),(-a,+∞)上單調(diào)遞增,在(1,-a)上單調(diào)遞減;
(2)存在a,使g(x)在[a,-a]上為減函數(shù).事實上,設(shè)h(x)=(-2x
3+3ax
2+6ax-4a
2-6a)e
x(x∈R),則h′(x)=[-2x
3+3(a-2)x
2+12ax-4a
2]e
x再設(shè)m(x)=-2x
3+3(a-2)x
2+12ax-4a
2(x∈R),
則g(x)在[a,-a]上單調(diào)遞減時,h(x)必在[a,0]上單調(diào)遞減所以h′(a)≤0,由于e
x>0,
因此g(x)在[a,-a]上為減函數(shù),當且僅當f(x)在[1,-a]上為減函數(shù),h(x)在[a,1]上為減函數(shù),且h(1)≥e•f(1).由(1)知,當a≤-2①時,f(x)在[1,-a]上為減函數(shù).又h(1)≥e•f(1)?4a
2+13a+3≤0?-3≤a≤-
②
不難知道,?x∈[a,1],h′(x)≤0??x∈[a,1],m(x)≤0,因m′(x)=-6x
2+6(a-2)x+12a=-6(x+2)(x-a),令m′(x)=0,則x=a,或x=-2.而a≤-2,于是
(p)當a<-2時,若a<x<-2,則m′(x)>0;若-2<x<1,則m′(x)<0.因而m(x)在(a,-2)上單調(diào)遞增,在
(-2,1)上單調(diào)遞減.
(q)當a=-2時,m′(x)≤0,m(x)在(-2,1)上單調(diào)遞減.
綜合(p)(q)知,當a≤-2時,m(x)在[a,1]上的最大值為m(-2)=-4a
2-12a-8.所以?x∈[a,1],m(x)≤0
?m(-2)≤0?-4a
2-12a-8≤0?a≤-2③,
又對x∈[a,1],m(x)=0只有當a=-2時在x=-2取得,亦即h′(x)=0只有當a=-2時在x=-2取得.因此,當a≤-2時,h(x)在[a,1]上為減函數(shù).
從而有①,②,③知,-3≤a≤-2
綜上所述,存在a,使g(x)在[a,-a]上為減函數(shù),且a的取值范圍為[-3,-2].