【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點。

(1)若的中點為,求證: 平面;

(2)如果,求此圓錐的體積;

(3)若二面角大小為,求.

【答案】1)證明見解析(2360°

【解析】

1)連接、,由三角形中位線定理可得,由圓周角定理我們可得,由圓錐的幾何特征,可得,進而由線面垂直的判定定理,得到平面,則,結合及線面垂直的判定定理得到平面;

2)若,易得,又由,我們求出圓錐的底面半徑長及圓錐的高,代入圓錐體積公式,即可得到圓錐的體積;

3)作于點,由面面垂直的判定定理可得平面,作于點,連,則為二面角的平面角,根據(jù)二面角的大小為,設,,進而可求出的大小

1)如圖:

連接、,因為的中點,所以

因為為圓的直徑,所以

因為平面,所以,所以平面,.又,,所以平面

2,

,,又,

3)作于點平面平面且平面平面

平面.再作于點,連,

為二面角的平面角

如圖:

,

,,,,

,

,解得,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的右焦點為,左頂點為,線段的中點為,圓過點,且與交于是等腰直角三角形,則圓的標準方程是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列.在歐洲,這個表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年發(fā)現(xiàn)這一規(guī)律的.我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,這是我國數(shù)學史上的一個偉大成就.如圖所示,在楊輝三角中,去除所有為1的項,依次構成數(shù)列,則此數(shù)列前135項的和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2012年“雙節(jié)”期間,高速公路車輛較多某調(diào)查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,將他們在某段高速公路的車速分成六段:,,后得到如圖的頻率分布直方圖.

某調(diào)查公司在采樣中,用到的是什么抽樣方法?

求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值.

若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】名學生排成一排,求分別滿足下列條件的排法種數(shù),要求列式并給出計算結果.

(1)甲不在兩端;

(2)甲、乙相鄰;

(3)甲、乙、丙三人兩兩不得相鄰;

(4)甲不在排頭,乙不在排尾。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中按分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調(diào)查。現(xiàn)在按課外閱讀時間的情況將學生分成三類:A類(不參加課外閱讀),B類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),C類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時)。調(diào)查結果如下表:

A類

B類

C類

男生

x

5

3

女生

y

3

3

(1)求出表中x,y的值;

(2)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認為“參加課外閱讀與否”與性別有關;

男生

女生

總計

不參加課外閱讀

參加課外閱讀

總計

附:K2=

P(K2≥k0

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,過點向圓引兩條切線,切點為,,若點的坐標為,則直線的方程為____________;若為直線上一動點,則直線經(jīng)過定點__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:

根據(jù)這9年的數(shù)據(jù),對作線性相關性檢驗,求得樣本相關系數(shù)的絕對值為0.243;

根據(jù)后5年的數(shù)據(jù),對作線性相關性檢驗,求得樣本相關系數(shù)的絕對值為0.984.

(1)如果要用線性回歸方程預測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,

方案一:選取這9年數(shù)據(jù)進行預測,方案二:選取后5年數(shù)據(jù)進行預測.

從實際生活背景以及線性相關性檢驗的角度分析,你覺得哪個方案更合適?

附:相關性檢驗的臨界值表:

(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結果作為概率,若從上述讀者中隨機調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,過的直線軸交于點,與軸交于點,記與坐標軸圍成的三角形的面積為.

1)若,且,求直線的方程;

2)若都在正半軸上,求的最小值;

3)寫出面積的取值范圍與直線條數(shù)的對應關系.(不需要證明)

查看答案和解析>>

同步練習冊答案