【題目】已知,.

(1) 的單調(diào)區(qū)間;

(2) ,求滿足的實(shí)數(shù)的取值集合.

【答案】(1) 當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

(2)

【解析】(1)由可得,(1分)

當(dāng)時(shí),,上單調(diào)遞增;

當(dāng)時(shí),令可得,令可得,

的單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間

當(dāng)時(shí),令可得,令可得,

的單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間.(4分)

綜上可得,當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),的單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間.(5分)

(2),,

設(shè),則,

上是增函數(shù),又,

時(shí),時(shí),

上是減函數(shù),上是增函數(shù),

,當(dāng)且僅當(dāng)時(shí)取等號(hào).(9分)

由(1)可知,當(dāng)時(shí),上是增函數(shù),上是減函數(shù),

時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),

時(shí),,當(dāng)且僅當(dāng),時(shí)取等號(hào),

,當(dāng)且僅當(dāng)時(shí)取等號(hào).

即當(dāng)且僅當(dāng)時(shí),,

∴滿足的實(shí)數(shù)的取值集合是.(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測(cè)試的原始成績(jī)采用百分制,發(fā)布成績(jī)使用等級(jí)制.各等級(jí)劃分標(biāo)準(zhǔn)如下:85分及以上,記為A等;分?jǐn)?shù)在[70,85)內(nèi),記為B等;分?jǐn)?shù)在[60,70)內(nèi),記為C等;60分以下,記為D等.同時(shí)認(rèn)定A,B,C為合格,D為不合格.已知某學(xué)校學(xué)生的原始成績(jī)均分布在[50,100]內(nèi),為了了解該校學(xué)生的成績(jī),抽取了50名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.

(Ⅰ)求圖中x的值,并根據(jù)樣本數(shù)據(jù)估計(jì)該校學(xué)生學(xué)業(yè)水平測(cè)試的合格率;

(Ⅱ)在選取的樣本中,從70分以下的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用X表示所抽取的3名學(xué)生中成績(jī)?yōu)镈等級(jí)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)為豐富居民節(jié)日活動(dòng),組織了迎新春象棋大賽,已知由1,2,3號(hào)三位男性選手和4,5號(hào)兩位女性選手組成混合組參賽.已知象棋大賽共有三輪,設(shè)三位男性選手在一至三輪勝出的概率依次是;兩名女性選手在一至三輪勝出的概率依次是.

(Ⅰ)若該組五名選手與另一組選手進(jìn)行小組淘汰賽,每名選手只比賽一局,共五局比賽,求該組兩名女性選手的比賽次序恰好不相鄰的概率;

(Ⅱ)若一位男性選手因身體不適退出比賽,剩余四人參加個(gè)人比賽,比賽結(jié)果相互不影響,設(shè)表示該組選手在四輪中勝出的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行節(jié)日促銷活動(dòng),消費(fèi)滿一定數(shù)額即可獲得一次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)這可以從以下兩種方式中任選一種進(jìn)行抽獎(jiǎng).

抽獎(jiǎng)方式①:讓抽獎(jiǎng)?wù)唠S意轉(zhuǎn)動(dòng)如圖所示的圓盤,圓盤停止后指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即中獎(jiǎng).

抽獎(jiǎng)方式②:讓抽獎(jiǎng)?wù)邚难b有3個(gè)白球和3個(gè)紅球的盒子中一次性摸出2個(gè)球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅球,即中獎(jiǎng).

假如你是抽獎(jiǎng)?wù),為了讓中?jiǎng)的可能性大,你應(yīng)該選擇哪一種抽獎(jiǎng)方式?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)試判斷f (x)的單調(diào)性,并證明你的結(jié)論;
(2)若f (x)為定義域上的奇函數(shù),求函數(shù)f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí), ,若存在x∈[t2﹣1,t],使不等式f(2x+t)≥2f(x)成立,則實(shí)數(shù)t的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別,設(shè)點(diǎn),=2.

(1)求橢圓C的方程;

(2)已知四邊形MNPQ的四個(gè)頂點(diǎn)均在曲線C上,且MQ∥NP,MQ⊥x軸,若直線MN和直線QP交于點(diǎn)S(4,0).判斷四邊形MNPQ兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:(1)函數(shù)f(x)在[0,+∞)上是增函數(shù),在(﹣∞,0)上也是增函數(shù),所以f(x)在R上是增函數(shù);(2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點(diǎn),則b2﹣8a<0,且a>0; (3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞);(4)函數(shù)y=lg10x和函數(shù)y=elnx表示相同函數(shù).其中正確命題的個(gè)數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足;數(shù)列的前項(xiàng)和為,且滿足, .

(1)求數(shù)列、的通項(xiàng)公式;

(2)是否存在正整數(shù),使得恰為數(shù)列中的一項(xiàng)?若存在,求所有滿足要求的;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案