分析 (Ⅰ)求出導(dǎo)函數(shù),設(shè)切點(diǎn)為(x0,y0).求出切點(diǎn)坐標(biāo),然后帶入y=-2x+b,求解即可.
(Ⅱ)構(gòu)造g(t)=f(t)-(-2t+m)=-t3+3t-1-m,求出導(dǎo)數(shù),得到極值點(diǎn),利用單調(diào)性,求解最值,推出結(jié)果即可.
(Ⅲ)求出導(dǎo)函數(shù)得到函數(shù)的極值,即可推出結(jié)果.
解答 解:(Ⅰ)f′(x)=-3x2+1,…(1分)
設(shè)切點(diǎn)為(x0,y0).故$-3{x_0}^2+1=-2$,∴x0=±1所以切點(diǎn)為(1,-1),(-1,-1)…(2分)
帶入y=-2x+b得b=1或-3.…(4分)
(Ⅱ)令g(t)=f(t)-(-2t+m)=-t3+3t-1-m,
由g'(t)=-3t2+3=0得t=1,t=-1(不合題意,舍去).
當(dāng)t變化時(shí)g'(t),g(t)的變化情況如下表:
t | (0,1) | 1 | (1,2) |
g'(t) | + | 0 | - |
g(t) | 遞增 | 極大值1-m | 遞減 |
點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的極值以及函數(shù)的最值單調(diào)性的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x | B. | $y={x^{\frac{2}{3}}}$ | C. | $y={x^{\frac{1}{2}}}$ | D. | y=|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-2,1) | B. | (3,2,1) | C. | (-3,2,-1) | D. | (-3,2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+bx-2(b∈R) | B. | f(x)=|x2-3| | C. | f(x)=1-|x-2| | D. | f(x)=x3+x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com