給出下面類比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集):
①“若a、b∈R,則a-b=0⇒a=b”類比推出“若a、b∈C,則a-b=0⇒a=b”;
②“若a、b、c、d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類比推出;“若a、b、c、d∈Q,
則a+b=c+d⇒a=c,b=d”;
③“若a、b∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”;
④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”.
其中類比結(jié)論正確的命題序號為________(把你認(rèn)為正確的命題序號都填上).
①②
解析試題分析:根據(jù)題意,由于類比推理的概念可知,
對于①“若a、b∈R,則a-b=0⇒a=b”類比推出“若a、b∈C,則a-b=0⇒a=b”;成立。
對于②“若a、b、c、d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類比推出;“若a、b、c、d∈Q,
則a+b=c+d⇒a=c,b=d”;成立。
對于③“若a、b∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”;當(dāng)a=2+3i,b=1+3i不成立,故錯誤。
對于④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”.比如z=不成立故答案為①②
考點(diǎn):命題真假的判定
點(diǎn)評:主要是考查了命題的真假的判定,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
科拉茨是德國數(shù)學(xué)家,他在1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個數(shù)列:6,3,10,5,16,8,4,2,1.對于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請你研究:
(1)如果,則按照上述規(guī)則施行變換后的第8項(xiàng)為 .
(2)如果對正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知的三邊長為,內(nèi)切圓半徑為(用),則;類比這一結(jié)論有:若三棱錐的內(nèi)切球半徑為,則三棱錐體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
觀察下列算式:
13 =1,
23 =3+5,
33 = 7+9+11
43 ="13" +15 +17 +19 ,
… …
若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“2013”這個數(shù),則n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則S4,S8-S4,S12-S8,S16-S12成等差數(shù)列,類比以上結(jié)論有:設(shè)等比數(shù)列{bn}的前n項(xiàng)積為Tn,則T4, , ,成等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com