設(shè){an}是等比數(shù)列,公比q=
2
,Sn為{an}的前n項(xiàng)和.記Tn=
17Sn-S2n
an+1
,n∈N*
.設(shè)Tn0為數(shù)列{Tn}的最大項(xiàng),則n0=
 
分析:首先用公比q和a1分別表示出Sn和S2n,代入Tn易得到Tn的表達(dá)式.再根據(jù)基本不等式得出n0
解答:解:Tn =
17a1 [1-(
2
)
n
 ]
1-
2
-
a1 [1-(
2
)
2n
 ]
1-
2
a1(
2
)
n

=
1
1-
2
(
2
)
2n
 -17(
2
)
n
 +16
(
2
)
n

=
1
1-
2
•[(
2
)n+
16
(
2
)
n
-17]

因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(
2
)n+
16
(
2
)
n
≧8,當(dāng)且僅當(dāng)(
2
)n
=4,
即n=4時(shí)取等號(hào),所以當(dāng)n0=4時(shí)Tn有最大值.
點(diǎn)評(píng):本題主要考查了等比數(shù)列的前n項(xiàng)和公式與通項(xiàng)及平均值不等式的應(yīng)用,屬于中等題.本題的實(shí)質(zhì)是求Tn取得最大值時(shí)的n值,求解時(shí)為便于運(yùn)算可以對(duì)(
2
)n
進(jìn)行換元,分子、分母都有變量的情況下通常可以采用分離變量的方法求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等比數(shù)列,若a1=1,a4=8,則q=
 
,數(shù)列{an}的前6項(xiàng)的和S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、設(shè){an}是等比數(shù)列,若a5=log28,則a4a6等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等比數(shù)列,公比q=
2
,Sn為{an}的前n項(xiàng)和.記Tn=
17Sn-S2n
an+1
,n∈N*,設(shè)Tn0為數(shù)列{Tn}的最大項(xiàng),則n0=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等比數(shù)列,公比q=2,Sn為{an}的前n項(xiàng)和.記Tn=
4Sn-S2nan+1
,n∈N*.設(shè)T為數(shù)列{Tn}的最大項(xiàng),則正整數(shù)n0=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽二模)設(shè){an}是等比數(shù)列,Sn為{an}的前n項(xiàng)和,且
S10
S5
=
31
32
,則
a5
a2
=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案