【題目】已知函數(shù),對(duì)任意,都有.
(1)求實(shí)數(shù)m的取值范圍;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)求得的導(dǎo)數(shù),討論0<m≤1, m> 1時(shí),判斷導(dǎo)數(shù)的符號(hào),可得單調(diào)性,結(jié)合不等式恒成立,可得m的范圍;
(2)由題意可得恒成立,令,求,再令求其導(dǎo)數(shù),判斷單調(diào)性,求得h (x) 的零點(diǎn),進(jìn)而得到g (x) 的單調(diào)性和最值,可得實(shí)數(shù)的取值范圍.
(1),當(dāng)時(shí),因?yàn)?/span>,,
則,在上是增函數(shù),
所以恒成立,滿足題設(shè);
當(dāng)時(shí),在上是減函數(shù),則時(shí),
不合題意,綜上,.
(2)時(shí),恒成立,∴恒成立,
∴令,則,
∴令,
∴,即在上單調(diào)遞增.
又,時(shí),,
∴,使.
當(dāng)時(shí),,,
當(dāng)時(shí),,.
∴在上單調(diào)遞增,在上單調(diào)遞減,
從而,而,
∴,
故,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為廣泛開展垃圾分類的宣傳教育和倡導(dǎo)工作,使市民樹立垃圾分類的環(huán)保意識(shí),學(xué)會(huì)垃圾分類的知識(shí),特舉辦了“垃圾分類知識(shí)競(jìng)賽".據(jù)統(tǒng)計(jì),在為期1個(gè)月的活動(dòng)中,共有兩萬人次參與網(wǎng)絡(luò)答題.市文明實(shí)踐中心隨機(jī)抽取100名參與該活動(dòng)的市民,以他們單次答題得分作為樣本進(jìn)行分析,由此得到如圖所示的頻率分布直方圖:
(1)求圖中a的值及參與該活動(dòng)的市民單次挑戰(zhàn)得分的平均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表);
(2)若垃圾分類答題挑戰(zhàn)賽得分落在區(qū)間之外,則可獲得一等獎(jiǎng)獎(jiǎng)勵(lì),其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得,若某人的答題得分為96分,試判斷此人是否獲得一等獎(jiǎng);
(3)為擴(kuò)大本次“垃圾分類知識(shí)競(jìng)賽”活動(dòng)的影響力,市文明實(shí)踐中心再次組織市民組隊(duì)參場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽,競(jìng)賽共分五輪進(jìn)行,已知“光速隊(duì)”與“超能隊(duì)”五輪的成績?nèi)缦卤恚?/span>
成績 | 第一輪 | 第二輪 | 第三輪 | 第四輪 | 第五輪 |
“光速隊(duì)” | 93 | 98 | 94 | 95 | 90 |
“超能隊(duì)” | 93 | 96 | 97 | 94 | 90 |
①分別求“光速隊(duì)”與“超能隊(duì)”五輪成績的平均數(shù)和方差;
②以上述數(shù)據(jù)為依據(jù),你認(rèn)為"光速隊(duì)”與“超能隊(duì)”的現(xiàn)場(chǎng)有獎(jiǎng)知識(shí)競(jìng)賽成績誰更穩(wěn)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個(gè),在水平桌面上無滑動(dòng)滾動(dòng)一周,它們的中心的運(yùn)動(dòng)軌跡長分別為,,,,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是各項(xiàng)均為正數(shù)的無窮數(shù)列,且滿足,.
(1)若,,求a的值;
(2)設(shè)數(shù)列滿足,其前n項(xiàng)的和為.
①求證:是等差數(shù)列;
②若對(duì)于任意的,都存在,使得成立.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了調(diào)查本小區(qū)業(yè)主對(duì)物業(yè)服務(wù)滿意度的真實(shí)情況,對(duì)本小區(qū)業(yè)主進(jìn)行了調(diào)查,調(diào)查中問了兩個(gè)問題1:你的手機(jī)尾號(hào)是不是奇數(shù)?問題2:你是否滿意物業(yè)的服務(wù)?調(diào)查者設(shè)計(jì)了一個(gè)隨機(jī)化裝置,其中裝有大小、形狀和質(zhì)量完全相同的白球和紅球,每個(gè)被調(diào)查者隨機(jī)從裝置中摸到紅球和白球的可能性相同,其中摸到白球的業(yè)主回答第一個(gè)問題,摸到紅球的業(yè)主回答第二個(gè)問題,回答“是”的人往一個(gè)盒子中放一個(gè)小石子,回答“否”的人什么都不要做由于問題的答案只有“是”和“否”,而且回答的是哪個(gè)問題別人并不知道,因此被調(diào)查者可以毫無顧慮地給出符合實(shí)際情況的答案.已知某小區(qū)80名業(yè)主參加了問卷,且有47名業(yè)主回答了“是”,由此估計(jì)本小區(qū)對(duì)物業(yè)服務(wù)滿意的百分比大約為( )
A.85%B.75%C.63.5%D.67.5%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學(xué)基本參數(shù).基本再生數(shù)指一個(gè)感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時(shí)間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計(jì)感染病例數(shù)I(t)隨時(shí)間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0 =1+rT.有學(xué)者基于已有數(shù)據(jù)估計(jì)出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計(jì)感染病例數(shù)增加1倍需要的時(shí)間約為(ln2≈0.69) ( )
A.1.2天B.1.8天
C.2.5天D.3.5天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,點(diǎn)在圓上,且圓上的所有點(diǎn)均在橢圓外,若的最小值為,且橢圓的長軸長恰與圓的直徑長相等,則下列說法正確的是( )
A.橢圓的焦距為B.橢圓的短軸長為
C.的最小值為D.過點(diǎn)的圓的切線斜率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著2022年北京冬奧會(huì)的臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運(yùn)動(dòng)人數(shù)快速上升,冰雪運(yùn)動(dòng)市場(chǎng)需求得到釋放.如圖是2012-2018年中國雪場(chǎng)滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計(jì)圖則下面結(jié)論中正確的是( ).
A.2012-2018年,中國雪場(chǎng)滑雪人數(shù)逐年增加;
B.2013-2015年,中國雪場(chǎng)滑雪人數(shù)和同比增長率均逐年增加;
C.中國雪場(chǎng)2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;
D.2016-2018年,中國雪場(chǎng)滑雪人數(shù)的增長率約為23.4%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時(shí),,若方程有300個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com