【題目】已知角α終邊逆時(shí)針旋轉(zhuǎn) 與單位圓交于點(diǎn) ,且
(1)求 的值,
(2)求 的值.

【答案】
(1)解:角α終邊逆時(shí)針旋轉(zhuǎn) 與單位圓交于點(diǎn) ,

可得sin( )= ,

cos( )= ,

sin(2 )=2sin( )cos( )= =

cos(2 )=2× =

=sin(2 )=sin(2 )cos ﹣sin cos(2 )= =


(2)解:∵ ,∴tan(2α+2β)= = =

sin(2 )=

cos(2 )=

tan(2 )=

tan(2α+2β)=tan[( )+(2 )]= = ,

解得 =


【解析】(1)利用已知條件求出sin( )與cos( ),然后利用二倍角公式以及兩角和的正弦函數(shù)化簡(jiǎn)求解即可.(2)求出正切函數(shù)的二倍角的值,利用兩角和的正切函數(shù)化簡(jiǎn)求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)在公比為2的等比數(shù)列{an}中,a2與a5的等差中項(xiàng)是9 .求a1的值;
(2)若函數(shù)y=a1sin( φ),0<φ<π的一部分圖象如圖所示,M(﹣1,a1),N(3,﹣a1)為圖象上的兩點(diǎn),設(shè)∠MON=θ,其中O為坐標(biāo)原點(diǎn),0<θ<π,求cos(θ﹣φ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.

(1)求證:AB1⊥CC1
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.

(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=3,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=3,AC=4,N是AB的中點(diǎn),邊AC(含端點(diǎn))上存在點(diǎn)M,使得BM⊥CN,則cosA的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某房地產(chǎn)開(kāi)發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由形狀為長(zhǎng)方形A1B1C1D1的休閑區(qū)和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10(如圖所示)

(1)若設(shè)休閑區(qū)的長(zhǎng)和寬的比x(x>1),求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;

(2)要使公園所占面積最小,則休閑區(qū)A1B1C1D1的長(zhǎng)和寬該如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)若ax>lnx恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:a>0,x0∈R,使得當(dāng)x>x0時(shí),ax>lnx恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖放置的邊長(zhǎng)為2的正三角形沿軸滾動(dòng), 設(shè)頂點(diǎn)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是, 有下列結(jié)論:

①函數(shù)的值域是;②對(duì)任意的,都有;

③函數(shù)是偶函數(shù);④函數(shù)單調(diào)遞增區(qū)間為.

其中正確結(jié)論的序號(hào)是________. (寫(xiě)出所有正確結(jié)論的序號(hào))

說(shuō)明:

“正三角形沿軸滾動(dòng)”包括沿軸正方向和沿軸負(fù)方向滾動(dòng). 沿軸正方向滾動(dòng)指的是先以頂點(diǎn)為中心順時(shí)針旋轉(zhuǎn), 當(dāng)頂點(diǎn)落在軸上時(shí), 再以頂點(diǎn)為中心順時(shí)針旋轉(zhuǎn), 如此繼續(xù). 類(lèi)似地, 正三角形可以沿軸負(fù)方向滾動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) 為實(shí)數(shù),且,

(I)求方程的解;

(II)若滿足,求證:①;

(III)在(2)的條件下,求證:由關(guān)系式所得到的關(guān)于的方程存在,使

查看答案和解析>>

同步練習(xí)冊(cè)答案