已知p:f(x)=
1-x3
,且|f(a)|<2,q:集合A={x|x2+(a+2)x+1=0,x∈R},且A≠∅.若p或q為真命題,p且q為假命題,求實數(shù)a的取值范圍.
分析:由條件p或q為真命題,p且q為假命題,確定p與q一真一假,然后根據(jù)命題的真假關系確定取值范圍.
解答:解:若|f(a)|=|
1-a
3
|<2
成立,則-6<1-a<6,解得-5<a<7,
即當-5<a<7時,p是真命題;     
若A≠∅,則方程x2+(a+2)x+1=0有實數(shù)根,
由△=(a+2)2-4≥0,解得a≤-4,或a≥0,
即當a≤-4,或a≥0時,q是真命題;
由于p或q為真命題,p且q為假命題,
∴p與q一真一假,
故知所求a的取值范圍是(-∞,-5]∪(-4,0)∪[7,+∞).…(12分)
點評:本題主要復合命題的命題與簡單命題的真假關系的應用,將命題進行化簡是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知p:f'(x)是f(x)=
13
x3-x2-35x+7
的導函數(shù),且f'(a)<0;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={ x|x>0},且A∩B=∅.求實數(shù)a的取值范圍,使“p或q”為真命題,“p且q”為假命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知 p:f(x)=
1-x3
,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知 p:f(x)=
1-x
3
,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省黃岡市黃州一中高三(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知 p:f(x)=,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案